

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Introduction

This book is a collection of the best practices for using Flask. There are a lot of pieces to the average Flask application. You’ll often need to interact with a database and authenticate users, for example. In the coming pages I’ll do my best to explain the “right way” to do this sort of stuff. My recommendations aren’t always going to apply, but I’m hoping that they’ll be a good option most of the time.

Assumptions

In order to present you with more specific advice, I’ve written this book with a few fundamental assumptions. It’s important to keep this in mind when you’re reading and applying these recommendations to your own projects.

Audience

The content of this book builds upon the information in the official documentation. I highly recommend that you go through the user guide and follow along with the tutorial [LINK TO USER GUIDE AND TUTORIAL]. This will give you a chance to become familiar with the vocabulary of Flask. You should understand what views are, the basics of Jinja templating and other fundamental concepts defined for beginners. I’ve tried to avoid overlap with the information already available in the user guide, so if you read this book first, there’s a good chance that you’ll find yourself lost (is that an oxymoron?).

With all of that said, the topics in this book aren’t highly advanced. The goal is just to highlight best practices and patterns that will make development easier for you. While I’m trying to avoid too much overlap with the official documentation, you may find that I reiterate certain concepts to make sure that they’re familiar. You shouldn’t need to have the beginner’s tutorial open while you read this.

Versions

Python 2 versus Python 3

As I write this, the Python community is in the midst of a transition from Python 2 to Python 3. The official stance of the PSF is as follows:

Python 2.x is the status quo, Python 3.x is the present and future of the language
Citation: http://wiki.python.org/moin/Python2orPython3

As of version 0.10, Flask runs with Python 3.3. When I asked Armin Ronacher about whether new Flask apps should begin using Python 3, he said they shouldn’t:

I’m not using it myself currently, and I don’t ever recommend to people things that I don’t believe in myself, so I’m very cautious about recommending Python 3.

His main reason is that there are still things in Python 3 that don’t work yet. Another reason of his for not recommending that new projects use Python 3 is that many dependencies simply don’t work with the new version yet. It’s possible that eventually Flask will officially recommend Python 3 for new projects, but for now it’s all about Python 2.

{ SEE ALSO:

	This site tracks which packages have been ported to Python 3: https://python3wos.appspot.com/ }

Since this book is meant to provide practical advice, I think it makes sense to write with the assumption of Python 2. Specifically, I’ll be writing the book with Python 2.7 in mind. Future updates may very well change this to evolve with the Flask community, but for now 2.7 is where we stand.

Flask version 0.10

At the time of writing this, 0.10 is the latest version of Flask (0.10.1 to be exact). Most of the lessons in this book aren’t going to change with minor updates to Flask, but it’s something to keep in mind nonetheless.

Annual reviews

I’m hesitant to commit to any one update schedule, since there are a lot of variables that will determine the appropriate time for an update. Essentially, if it looks like things are getting out of date, I’ll work on releasing an update. Eventually I might stop, but I’ll make sure to announce that if it happens.

Conventions used in this book

Each chapter stands on its own

Each chapter in this book is an isolated lesson. Many books and tutorials are written as one long lesson. Generally this means that an example program or application is created and updated throughout the book to demonstrate concepts and lessons. Instead, examples are included in each lesson to demonstrate the concepts, but the examples from different chapters aren’t meant to be combined into one large project.

Formatting

Code blocks will be used to present example code.

print “Hello world!”

Directory listings will sometimes be shown to give an overview of the structure of an application or directory.

static/
 style.css
 logo.png
 vendor/
 jquery.min.js

Italic text will be used to denote a file name.

Bold text will be used to denote a new or important term.

Supplemental information may appear in one of several boxes:

{ WARNING: Common pitfalls that could cause major problems may be shown in a warning box. }

{ NOTE: Tangential information may be presented in a “note” box. }

{ SEE ALSO: I may provide some links with more information on a given topic in a “see also” box. }

Summary

	This book contains recommendations for using Flask.

	I’m assuming that you’ve gone through the Flask tutorial.

	I’m using Python 2.7.

	I’m using Flask 0.10.

	I’ll do my best to keep the content of the book up-to-date with annual reviews.

	Each chapter in this book stands on its own.

	There are a few ways that I’ll use formatting to convey additional information about the content.

	Summaries will appear as concise lists of takeaways from the chapters.

 [image: _images/2.png]Coding conventions

Coding conventions

There are a number of conventions in the Python community to guide the way you format your code. If you’ve been developing with Python for a while, then you might already be familiar with some of these conventions. I’ll keep things brief and leave a few URLs where you can find more information if you haven’t come across these topics before.

Let’s have a PEP rally!

A PEP is a “Python Enhancement Proposal.” These proposals are indexed and hosted at python.org [http://www.python.org/dev/peps/]. In the index, PEPs are grouped into a number of categories, including meta-PEPs, which are more informational than technical. The technical PEPs, on the other hand, often describe things like improvements to Python’s internals.

There are a few PEPs, like PEP 8 and PEP 257 that affect the way we write our code. PEP 8 contains coding style guidelines. PEP 257 contains guidelines for docstrings, the generally accepted method of documenting code.

PEP 8: Style Guide for Python Code

PEP 8 is the official style guide for Python code. I recommend that you read it and apply its recommendations to your Flask projects (and all other Python code). Your code will be much more approachable when it starts growing to many files with hundreds, or thousands, of lines of code. The PEP 8 recommendations are all about having more readable code. Plus, if your project is going to be open source, potential contributors will likely expect and be comfortable with code written with PEP 8 in mind.

One particularly important recommendation is to use 4 spaces per indentation level. No real tabs. If you break this convention, it’ll be a burden on you and other developers when switching between projects. That sort of inconsistency is a pain in any language, but white-space is especially important in Python, so switching between real tabs and spaces could result in any number of errors that are very difficult to debug.

PEP 257: Docstring Conventions

PEP 257 [LINK TO PEP] covers another Python standard: docstrings. You can read the definition and recommendations in the PEP itself, but here’s an example to give you an idea of what a docstring looks like:

def launch_rocket():
 """Main launch sequence director.

 Kicks off each of the actions that need to be taken to launch the rocket.
 """
 # [...]

These kinds of docstrings can be used by software such as Sphinx [http://sphinx-doc.org/] to generate documentation files in HTML, PDF and other formats. They also contribute to making your code more approachable.

Relative imports

Relative imports make life a little easier when developing Flask apps. The premise is simple. Previously, you might have specified the app’s package name when importing internal modules:

from myapp.models import User

Using relative imports, you would indicate the relative location of the module using a dot notation where the first dot indicates the current directory and each subsequent dot represents the next parent directory.

from ..models import User

The advantage of this method is that the package becomes a heck of a lot more modular. Now you can rename your package and re-use modules from other projects without the need to update the hard-coded import statements.

{ SEE MORE:

	You can read a little more about the syntax for relative imports from this section in PEP 328: http://www.python.org/dev/peps/pep-0328/#guido-s-decision

	Here’s a Tweet that I came across that makes a good testimonial for using relative imports: https://twitter.com/dabeaz/status/372059407711887360
}

Summary

	Try to follow the coding style conventions laid out in PEP 8.

	Try to document your app with docstrings as defined in PEP 257.

	Use relative imports to import your apps internal modules.

 [image: _images/3.png]Environment

Environment

Your application is probably going to require a lot of software to function properly. If it doesn’t at least require the Flask package, you may be reading the wrong book. Your application’s environment is essentially all of the things that need to be around when it runs. Lucky for us, there are a number of things that we can do to make managing our environment much less complicated.

Use virtualenv to manage your environment

virtualenv is a tool for isolating your application in what is called a virtual environment. A virtual environment is a directory that contains the software on which your application depends. A virtual environment also changes your environment variables to keep your development environment contained. Instead of downloading packages, like Flask, to your system-wide — or user-wide — package directories, we can download them to an isolated directory for our current application. This makes it easy to specify which Python binary to use, which dependencies want to have available on a per project basis.

Virtualenv also lets you use different versions of the same package for different projects. This flexibility may be important if you’re working on an older system with several projects that have different version requirements.

When using virtualenv, you’ll generally have only a few Python packages installed globally on your system. One of these will be virtualenv itself:

$ pip install virtualenv

Then, when you are inside your project directory, you’ll create a new virtual environment with virtualenv:

$ virtualenv venv

This creates a new directory where the dependencies will be installed.

{ NOTE: The argument passed to virtualenv is the destination directory of the virtual environment. It can be anything you’d like. }

Once the new virtual environment has been created, you must activate it by sourcing the bin/activate script that was created inside the virtual environment:

$ source venv/bin/activate

This script makes some changes to your shell’s environment variables so that everything points to the new virtual environment instead of your global system. You can see the effect by running which python; “python” now refers to the Python binary in the virtual environment. When a virtual environment is active, dependencies installed with Pip will be downloaded to that virtual environment instead of the global system.

You may notice that your shell prompt has been changed too. virtualenv prepends the name of the currently activated virtual environment, so you know that you’re not working on the global system.

You can deactivate your virtual environment by running the deactivate command.

(venv)$ deactivate
$

Manage virtual environments with virtualenvwrapper

I didn’t want to mention virtualenvwrapper until you had seen the basics of virtualenv. I wanted to make that you understand what virtualenvwrapper is improving upon, so that you’ll understand why you’d want to use it.

The virtual environment directory adds clutter to your project repository. You only interact with it directly when activating the virtual environment. It shouldn’t even be in version control. The solution to this clutter is to use virtualenvwrapper. This package keeps all of your virtual environments out of the way in a single directory, usually ~/.virtualenvs/.

To install virtualenvwrapper, follow the instructions in the documentation [http://virtualenvwrapper.readthedocs.org/en/latest/].

{ WARNING: Make sure that you’ve deactivated all virtual environments before installing virtualenvwrapper. You want it installed globally, not in a pre-existing environment. }

Now, instead of running virtualenv to create an environment, you’ll run mkvirtualenv:

$ mkvirtualenv rocket
New python executable in rocket/bin/python
Installing setuptools............done.
Installing pip...............done.

mkvirtualenv creates a directory in your virtual environments folder, e.g. ~/.virtualenvs, and activates it for you. Just like with plain old virtualenv, python and pip now point to that virtual environment instead of the global system. To activate a particular environment, use the command: workon [environment name]. deactivate still deactivates the environment.

Keeping track of dependencies

As a project grows, you’ll find that the list of dependencies grows with it. It’s not uncommon to need dozens of Python packages installed before you can even run a Flask application. The easiest way to manage these is with a simple text file. Pip can generate a text file listing all installed packages. It can also read in this list to install each of them on a new system, or in a freshly minted environment.

pip freeze

requirements.txt is a text file used by many Flask applications to list all of the packages needed to run an application. It is generated by running pip freeze > requirements.txt. The list can be installed later using pip install -r requirements.txt.

{ Warning: Make sure that you are operating in the correct virtual environments when freezing and installing dependencies. }

Manually tracking dependencies

As your project grows, you may find that certain packages listed by pip freeze aren’t actually needed to run the application. You’ll have packages that are installed for development only. pip freeze doesn’t discriminate; it just lists the packages that are currently installed. As a result you may want to manually track your depencies as you add them. You can separate those packages need to run your application and those needed to develop your application into require_run.txt and require_dev.txt respectively.

Version control

Pick a version control system and use it. I recommend Git. From what I’ve seen, Git is the most popular choice for projects these days. Being able to delete code without worrying about making a critical mistake is invaluable. You’ll be able to keep your project free of massive blocks of commented out code, because you can delete it now and revert that change later should the need arise. Plus, you’ll have backup copies of your entire project on GitHub, Bitbucket, or your own Gitolite server.

What to keep out of version control

I usually keep a file out of version control for one of two reasons. Either it’s clutter, or it’s a secret. Compiled files, e.g. .pyc files and virtual environments (if you’re not using virtualenvwrapper for some reason) are examples of clutter. They don’t need to be in version control because they can be generated from .py files and requirements.txt respectively. API keys, application secret keys, and database credentials are examples of secrets. They shouldn’t be in version control because their exposure would be a massive breach of security.

{ NOTE: When making security related decisions, I assume that my repository will become public at some point. This means keeping secrets out, and never assuming that a security hole won’t be found because, “Who’s going to guess that they could do that?” }

When using Git, you can create a special file called .gitignore in your repository. In it, list regular expression patterns to match against filenames. Any filename that matches one of the patterns will be ignored by Git. I recommend ignoring *.pyc and /instance to get you started. Instance folders are used to make secret configuration variables available to your application.

{ .gitignore:
*.pyc
instance/
}

{ SEE ALSO:

	You can read more about .gitignore here: http://git-scm.com/docs/gitignore

	The Flask docs have a good section on instance folders: http://flask.pocoo.org/docs/config/#instance-folders
}

Summary

	Use virtualenv to keep your application’s dependencies together.

	Use virtualenvwrapper to keep your virtual environments together.

	Keep track of dependencies with one or more text files.

	Use a version control system. I recommend Git.

	Use .gitignore to keep clutter and secrets out of version control.

 [image: _images/4.png]Organizing your project

Organizing your project

Flask doesn’t require that your project directory have a certain structure. Unlike Django, which comes with a startapp tool to create your application skeletons, Flask leaves the organization of your application up to you. This is one of the reasons I liked Flask as a beginner, but it does mean that you have to put some thought into how to structure your code. You could put your entire application in one file, or have it spread across multiple packages. Neither of these is ideal for most projects though. There are a few organizational patterns that you can use to make development and deployment easier.

Definitions

There are a few terms that I want to define for this section.

Repository: This is the base folder where your applications sits. This term traditionally refers to version control systems, but that’s out of the scope here. When I refer to your repository in this chapter, I’m talking about the root directory of your project. You probably won’t need to leave this directory when working on your application.

Package: This refers to a Python package that contains your application’s code. I’ll talk more about setting up your app as a package in this chapter, but for now just know that the package is a sub-directory of the repository.

Module: A module is a single Python file that can be imported by other Python files. A package is essentially multiple modules packaged together.

{ SEE ALSO:

	Read more about Python modules here: http://docs.python.org/2/tutorial/modules.html

	That link has a section on packages as well: http://docs.python.org/2/tutorial/modules.html#packages
}

Organization patterns

Single module

A lot of Flask examples that you come across will keep all of the code in a single file, often app.py. This is great for quick projects, where you just need to serve a few routes and you’ve got less than a few hundred lines of application code.

The repository for a single module application might look something like this:

app.py
config.py
requirements.txt
static/
templates/

Application logic would sit in app.py in this example.

Package

When you’re working on a project that’s a little more complex, a single module can get messy. You’ll need to define classes for models and forms, and they’ll get mixed in with the code for your routes and configuration. All of this can frustrate development. To solve this problem, we can factor out the different components of our app into a group of inter-connected modules — a package.

The repository for a package-based application will probably look something like this:

config.py
requirements.txt
run.py
instance/
 /config.py
yourapp/
 /__init__.py
 /views.py
 /models.py
 /forms.py
 /static/
 /templates/

This structure allows you to group the different components of your application in a logical way. The class definitions for models are together in models.py, the route definitions are in views.py, and forms are defined in forms.py (we’ll talk about forms later).

This table provides a basic rundown of the components you’ll find in most Flask applications:

{ THE FOLLOWING DATA SHOULD BE IN A TABLE }

/run.py : This is the file that is invoked to start up a development server. It gets a copy of the app from your package and runs it. This won’t be used in production, but it will see a lot of mileage in development.

/requirements.txt : This file lists all of the Python packages that your app depends on. You may have separate files for production and development dependencies.

/config.py : This file contains most of the configuration variables that your app needs.

/instance/config.py : This file contains configuration variables that shouldn’t be in version control. This includes things like API keys and database URIs containing passwords. This also contains variables that are specific to this particular instance of your application. For example, you might have DEBUG = False in config.py, but set DEBUG = True in instance/config.py on your local machine for development. Since this file will be read in after config.py, it will override it and set DEBUG = False.

/yourapp/ : This is the package that contains your application.

/yourapp/init.py : This file initializes your application and brings together all of the various components.

/yourapp/views.py : This is where the routes are defined. It may be split into a package of its own (yourapp/views/) with related views grouped together into modules.

/yourapp/models.py : This is where you define the models of your application. This may be split into several modules in the same way as views.py.

/yourapp/static/ : This file contains the public CSS, JavaScript, images and other files that you want to make public via your app. It is accessible from yourapp.com/static/ by default.

/yourapp/templates/ : This is where you’ll put the Jinja2 templates for your app.

There will probably be several other files included in your app in the end, but these are common to most Flask applications.

Blueprints

At some point you may find that you have a lot of related routes. If you’re like me, your first thought will be to split views.py into a package and group related views into modules. When you’re at this point, it may be time to factor your application into blueprints.

Blueprints are essentially components of your app defined in a somewhat self-contained manner. They act as apps within your application. You might have different blueprints for the admin panel, the front-end and the user dashboard. This lets you group views, static files and templates by components, while letting you share models, forms and other aspects of your application between several components.

{ SEE ALSO:

	You can read more about blueprints in chapter 7.
}

Summary

	Using a single module for your application is good for quick projects.

	Using a package for your application is good for projects with views, models, forms, etc.

	Blueprints are a great way to organize projects with several distinct components.

 [image: _images/5.png]Configuration

Configuration

When you’re learning Flask, configuration seems simple. You just define some variables in config.py and everything works. That simplicity starts to fade away when you have to manage configuration for a production application. You may need to protect secret API keys or use different configurations for different environments (e.g. development and production). There are some advanced Flask features available to help us make this easier.

The simple case

A simple application may not need any of these complicated features. You may just need to put config.py in the root of your repository and load it in app.py or yourapp/init.py

config.py should contain one variable assignment per line. Once config.py is loaded later, the configuration variables will be accessible via the app.config dictionary, e.g. app.config[“DEBUG”]. Here’s an example of a typical config.py file for a small project:

DEBUG = True # Turns on debugging features in Flask
BCRYPT_LEVEL = 13 # Configuration for the Flask-Bcrypt extension
MAIL_FROM_EMAIL = "robert@example.com" # For use in application emails

There are some built-in configuration variables like DEBUG. There are also some configuration variables for extensions that you may be using like BCRYPT_LEVEL for the Flask-Bcrypt extension, used for password hashing. You can even define your own configuration variables for use throughout the application. In this example, I would use app.config[“MAIL_FROM_EMAIL”] whenever I needed the default “from” address for a transactional email (e.g. password resets). It makes it easy to change that later on.

To load these configuration variables into the application, I would use app.config.from_object() in app.py for a single-module application or yourapp/init.py for a package based application. In either case, the code looks something like this:

from flask import Flask

app = Flask(__name__)
app.config.from_object('config')
Now I can access the configuration variables via app.config["VAR_NAME"].

Some important configuration variables

{ THIS INFORMATION SHOULD BE IN A TABLE }

	VARIABLE : DESCRIPTION : DEFAULT VALUE

	DEBUG : Gives you some handy tools for debugging errors. This includes a web-based stack trace and Python console when an request results in an application error. : Should be set to True in development and False in production.

	SECRET_KEY : This is a secret key that is used by Flask to sign cookies and other things. You should define this in your instance folder to keep it out of version control. You can read more about instance folders in the next section. : This should be a complex random value.

	BCRYPT_LEVEL : If you’re using Flask-Bcrypt to hash user passwords (if you’re not, start now), you’ll need to specify the number of “rounds” that the algorithm executes in hashing a password. The more rounds used in hashing, the longer it will be for a computer hash (and importantly, to crack) the password. The number of rounds used should increase over time as computing power increases. : As a rule of thumb, take the last two digits of the current year and use that value. For example, I’m writing this in 2013, so I’m currently using a BCRYPT_LEVEL = 13. You’ll often hear that you should choose the highest possible level before you application becomes too slow to bear. That’s true, but it’s tough to translate into a number to use. Feel free to play around with higher numbers, but you should be alright with that rule of thumb.

{ WARNING: Make sure DEBUG = False in production. Leaving it on will allow users to run arbitrary Python code on your server. }

Instance folder

Sometimes you’ll need to define configuration variables that shouldn’t be shared. For this reason, you’ll want to separate them from the variables in config.py and keep them out of the repository. You may be hiding secrets like database passwords and API keys, or defining variables specific to your current machine. To make this easy, Flask gives us a feature called Instance folders. The instance folder is a subdirectory sits in the repository root and contains a configuration file specifically for this instance of the application. It is not committed to version control.

Here’s a simple repository for a Flask application using an instance folder:

config.py
requirements.txt
run.py
instance/
 config.py
yourapp/
 __init__.py
 models.py
 views.py
 templates/
 static/

Using instance folders

To load the configuration variables defined inside of an instance folder, you can use app.config.from_pyfile(). If we set instance_relative_config=True when we create our app with the Flask() call, app.config.from_pyfile() will check for the specified file in the instance/ directory.

app = Flask(__name__, instance_relative_config=True)
app.config.from_object('config')
app.config.from_pyfile('config.py')

Now, you can define variables in instance/config.py just like you did in config.py. You should also add the instance folder to your version control system’s ignore list. To do this with git, you would save instance/ on a new line in gitignore.

Secret keys

The private nature of the instance folder makes it a great candidate for defining keys that you don’t want exposed in version control. These may include your app’s secret key or third-party API keys. This is especially important if your application is open source, or might be at some point in the future.

Your instance/config.py file might look something like this:

{ THIS COULD BE A GOOD CHANCE TO ENCODE BACKER NAMES! }

SECRET_KEY = 'ABCDEFG' # This is a bad secret key!
STRIPE_API_KEY = 'yekepirtsaton'
SQLALCHEMY_DATABASE_URI = "postgresql://username:password@localhost/databasename"

Minor environment-based configuration

If the difference between your production and development environments are pretty minor, you may want to use your instance folder to handle the configuration changes. Variables defined in the instance/config.py file can override the value in config.py. You just need to make the call to app.config.from_pyfile() after app.config.from_object(). One way to take advantage of this is to change the way your app is configured on different machines. Your development repository might look like this:

config.py

DEBUG = False
SQLALCHEMY_ECHO = False

instance/config.py

DEBUG = True
SQLALCHEMY_ECHO = True

Then in production, you would leave these lines out of instance/config.py and it would fall back to the values defined in config.py.

{ SEE MORE:

	Read about Flask-SQLAlchemy’s configuration keys here: http://pythonhosted.org/Flask-SQLAlchemy/config.html#configuration-keys
}

Configuring from envvar

The instance folder shouldn’t be in version control. This means that you won’t be able to track changes to your instance configurations. That might not be a problem with one or two variables, but if you have a finely tuned configurations for various environments (production, staging, development, etc.) you don’t want to risk losing that.

Flask gives us the ability to choose a configuration file on the fly based on the value of an environment variable. This means that we can have several configuration files in our repository (and in version control) and always load the right one, depending on the environment.

When we’re at the point of having several configuration files in the repository, it’s time to move those files into a config package. Here’s what that looks like in a repository:

requirements.txt
run.py
config/
 __init__.py # Empty, just here to tell Python that it's a package.
 default.py
 production.py
 development.py
 staging.py
instance/
 config.py
yourapp/
 __init__.py
 models.py
 views.py
 static/
 templates/

In this case we have a few different configuration files:

{ PUT THIS IN A TABLE }

	config/default.py : Default values, to be used for all environments or overridden by individual environments. An example might be setting DEBUG = False in config/default.py and DEBUG = True in config/development.py.

	config/development.py : Values to be used during development. Here you might specify the URI of a database sitting on localhost.

	config/production.py : Values to be used in production. Here you might specify the URI for your database server, as opposed to the localhost database URI used for development.

	config/staging.py : Depending on your deployment process, you may have a staging step where you test changes to your application on a server that simulates a production environment. You’ll probably use a different database, and you may want to alter other configuration values for staging applications.

To actually use these files in your various environments, you can make a call to app.config.from_envvar():

yourapp/init.py

app = Flask(__name__, instance_relative_config=True)
app.config.from_object('config.default')
app.config.from_pyfile('config.py') # Don't forget our instance folder
app.config.from_envvar('APP_CONFIG_FILE')

app.config.from_envvar(‘APP_CONFIG_FILE’) will load the file specified in the environment variable APP_CONFIG_FILE. The value of that environment variable should be the full path of a configuration file.

How you set this environment variable depends on the platform on which you’re running your app. If you’re running on a regular Linux server, you could set up a shell script that sets the environment variables and runs run.py:

start.sh

APP_CONFIG_FILE=/var/www/yourapp/config/production.py
python run.py

If you’re using Heroku, you’ll want to set the environment variables with the Heroku tools. The same idea applies to other “PaaS” platforms.

Summary

	A simple app may only need one configuration file: config.py.

	Instance folders can help us hide secret configuration values.

	Instance folders can be used to alter an application’s configuration for a specific environment.

	We should use environment variables and app.config.from_envvar() for complicated, environment-based configurations.

 [image: _images/6.png]Advanced patterns for views and routing

Advanced patterns for views and routing

View decorators

Python decorators let us modify functions using other functions. When a function is “decorated” with another function, the decorator is called and can then call the original function, though it doesn’t have to. We can use decorators to wrap several views with some code that we wish to apply to each.

The syntax for decorating a function looks like this:

@decorator_function
def decorated():
 pass

If you’ve gone through the Flask tutorial, that syntax might look familiar to you. @app.route is a decorator used to route URLs to view functions in Flask apps.

Let’s take a look at some other decorators you can use in your Flask apps.

Authentication

If your application requires that a user be logged in to access certain areas, there’s a good chance you want to use the Flask-Login extension. In addition to handling the details of user authentication, Flask-Login gives us a decorator to restrict certain views to authenticated users: @login_required.

Here are a few views from an example application that uses Flask-Login and the @login_required decorator.

from Flask import render_template
from flask.ext.login import login_required, current_user

@app.route('/')
def index():
 return render_template("index.html")

@app.route('/dashboard')
@login_required
def account():
 return render_template("account.html")

{ WARNING: @app.route should always be the outermost view decorator. }

Only an authenticated user will be able to access the /dashboard route. You can configure Flask-Login to redirect unauthenticated users to a login page, return an HTTP 401 status or anything else you’d like it to do with them.

Caching

Imagine that an article mentioning your application just appeared on CNN and several other news sites. You’re getting thousands of requests per second. Your homepage makes several trips to the database for each request, so all of this attention is slowing things down to a crawl. How can you speed things up quickly, so all of these visitors don’t miss out on our site?

There are many good answers, but the one that is relevant to this chapter is to implement caching. Specifically, we’re going to use the Flask-Cache extension. This extension provides us with a decorator that we can use on our index view to cache the response for some period of time.

You can configure Flask-Cache to work with whichever caching software you wish to use. A popular choice is Redis, which is easy to set-up and use. Assuming Flask-Cache is configured, here’s what our decorated view looks like.

from flask.ext.cache import Cache
from flask import Flask

app = Flask()

We'll ignore the configuration settings that you would normally include in this call
cache = Cache(app)

@app.route('/')
@cache.cached(timeout=60)
def index():
 [...] # Make a few database calls to get the information you need
 return render_template(
 'index.html',
 latest_posts=latest_posts,
 recent_users=recent_users,
 recent_photos=recent_photos
)

Now the function will be run a maximum of once every 60 seconds. The response will be saved in our cache and pulled from there for any intervening requests.

{ NOTE: Flask-Cache also lets us memoize functions — or cache the result of a function being called with certain parameters. You can even cache computationally expensive Jinja2 template snippets! }

{ SEE MORE:

	Read more about Redis here: http://redis.io/

	Read about how to use Flask-Cache, and the many other things you can cache here: http://pythonhosted.org/Flask-Cache/
}

Custom decorators

For this example, let’s imagine we have an application that charges users each month. If a user’s account is expired, we’ll redirect them to the billing page and tell them to upgrade.

myapp/util.py

from functools import wraps
from datetime import datetime

from flask import flash, redirect, url_for

from flask.ext.login import current_user

def check_expired(func):
 @wraps(func)
 def decorated_function(*args, **kwargs):
 if datetime.utcnow() > current_user.account_expires:
 flash("Your account has expired. Please update your billing information.")
 return redirect(url_for('account_billing'))
 return func(*args, **kwargs)

 return decorated_function

{ FIX LINE NUMBERS }

1: When a function is decorated with @check_expired, check_expired() is called and the decorated function is passed as a parameter.

2: @wraps is a decorator that tells Python that the function decorated_function() wraps around the view function func(). This isn’t strictly necessary, but it makes working with decorated functions a little more natural.

{ SEE MORE: Read more about what wraps() does here: http://docs.python.org/2/library/functools.html#functools.wraps }

3: decorated_function will get all of the args and kwargs that were passed to the original view function func(). This is where we check if the user’s account is expired. If it is, we’ll flash a message and redirect them to the billing page.

7: Now that we’ve done what we wanted to do, we run the original view func() with its original arguments.

Here’s an example using our custom decorator and the @login_required decorator from the Flask-Login extension. We can use multiple decorators by stacking them.

{ NOTE: The topmost decorator will run first, then call the next function in line: either the view function or the next decorator. The decorator syntax is just a little syntactic sugar.
This…

@foo
@bar
def bat():
 pass

…is the same is this:

def bat():
 pass
bat = foo(bar(bat))

}

myapp/views.py

from flask import render_template

from flask.ext.login import login_required

from . import app
from .util import check_expired

@app.route('/use_app')
@login_required
@check_expired
def use_app():
 """This is where users go to use my amazing app."""

 return render_template('use_app.html')

@app.route('/account/billing')
@login_required
def account_billing():
 """This is where users go to update their billing info."""
 # [...]
 return render_template('account/billing.html')

Now when a user tries to access /use_app, check_expired() will make sure that there account hasn’t expired before running the view function.

URL Converters

Built-in converters

When you define a route in Flask, you can specify parts of it that will be converted into Python variables and passed to the view function. For example, you can specify that you are expecting a portion we’ll call “username” in the URL like so:

@app.route('/user/<username>')
def profile(username):
 pass

Whatever is in the part of the URL labeled will get passed to the view as the username parameter. You can also specify a converter to filter out what gets passed:

 Blueprints

 [image: _images/7.png]Blueprints

Blueprints

What is a blueprint?

A blueprint defines a collection of views, templates, static files, etc. that can be applied to an application. For example, let’s imagine that we have a blueprint for an admin panel. This blueprint would define the views for routes like /admin/login and /admin/dashboard. It may also include the templates and static files to be served on those routes. You can then apply this blueprint for an admin panel to your app, be it a social network for astronauts or a CRM for rocket salesmen. Now your app has an admin panel.

Why would you use blueprints?

The killer use-case of blueprints is to organize your application into distinct components. For a Twitter-like microblog, we might have a blueprint for the website pages, e.g. index.html and about.html. Then we could have another for the logged-in dashboard where we show all of the latest posts and yet another for our administrator’s panel. Each distinct area of the site can be separated in the code as well. This allows you to structure your app has several smaller “apps” that each do one thing.

{ SEE ALSO: http://flask.pocoo.org/docs/blueprints/#why-blueprints }

Where do you put them?

Like everything with Flask, there are many ways that you can organize your app using blueprints. With blueprints, I like to think of the choice as functional versus divisional (terms I’m borrowing from the business world).

Functional structure

With a functional structure, you organize the pieces of your app by what they do. Templates are grouped together in one directory, static files in another and views in a third.

yourapp/
 __init__.py
 static/
 templates/
 home/
 control_panel/
 admin/
 views/
 __init__.py
 home.py
 control_panel.py
 admin.py
 models.py

With the exception of yourapp/views/init.py, each of the .py files in the yourapp/views/ directory is a blueprint. In yourapp/init.py we would import those blueprints and register them on our Flask() object. We’ll look a little more at how this is implemented later in this chapter.

{ Note: At the time of writing this, the Flask website at flask.pocoo.org uses this structure. https://github.com/mitsuhiko/flask/tree/website/flask_website }

Divisional

With the divisional structure, you organize the pieces of the application based on which part of the app they contribute to. All of the templates, views and static files for the admin panel go in one directory, and those for the user control panel go in another.

yourapp/
 __init__.py
 admin/
 __init__.py
 views.py
 static/
 templates/
 home/
 __init__.py
 views.py
 static/
 templates/
 control_panel/
 __init__.py
 views.py
 static/
 templates/
 models.py

Here, each directory under yourapp/ is a separate blueprint. All of the blueprints are applied to the Flask() app in the top-level init.py

Which one is best?

The organizational structure you choose is largely a personal decision. The only difference is the way the hierarchy is represented – i.e. you can architect Flask apps with either methodology – so you should choose the one that makes sense to you.

If your app has largely independent pieces that only share things like models and configuration, divisional might be the way to go. An example might be a SaaS app that lets user’s build websites. You could have blueprints in “divisions” for the home page, the control panel, the user’s website, and the admin panel. These components may very well have completely different static files and layouts. If you’re considering spinning off your blueprints as extensions or using them for other projects, a divisional structure will be easier to work with.

On the other hand, if the components of your app flow together a little more, it might be better represented with a functional structure. An example of this would be Facebook. If it were to use Flask, it might have blueprints for the home pages (i.e. signed-out home, register, about, etc.), the dashboard (i.e. the news feed), profiles (/robert/about and /robert/photos), even settings (/settings/security and /settings/privacy) and many more. These components all share a general layout and styles, but each has its own layout as well. Here’s a heavily abridged version of what Facebook might look like it if were built with Flask:

facebook/
 __init__.py
 templates/
 layout.html
 home/
 layout.html
 index.html
 about.html
 signup.html
 login.html
 dashboard/
 layout.html
 news_feed.html
 welcome.html
 find_friends.html
 profile/
 layout.html
 timeline.html
 about.html
 photos.html
 friends.html
 edit.html
 settings/
 layout.html
 privacy.html
 security.html
 general.html
 views/
 __init__.py
 home.py
 dashboard.py
 profile.py
 settings.py
 static/
 style.css
 logo.png
 models.py

The blueprints in facebook/views/ are little more than collections of views rather than wholy independent components. The same static files will be used for the views in most of the blueprints. Most of the templates will extend a master template. A functional structure is a good way to organize this project.

How do you use them?

Basic usage

Let’s take a look at the code for one of the Blueprints from that Facebook example:

facebook/views/profile.py

from flask import Blueprint, render_template

profile = Blueprint('profile', __name__)

@profile.route('/<user_url_slug>')
def timeline(user_url_slug):
 # Do some stuff
 return render_template('profile/timeline.html')

@profile.route('/<user_url_slug>/photos')
def photos(user_url_slug):
 # Do some stuff
 return render_template('profile/photos.html')

@profile.route('/<user_url_slug>/about')
def about(user_url_slug):
 # Do some stuff
 return render_template('profile/about.html')

To create a blueprint object, you import the Blueprint() class and initialize it with the parameters name and import_name. Usually import_name will just be __name__, which is a special Python variable containing the name of the current module.

{ NOTE: When using a divisional structure, you’d want to tell Flask that the blueprint has its own template and static directories. Here’s what our definition would look like in that case:

profile = Blueprint('profile', __name__,
 template_folder='templates',
 static_folder='static')

}

We have now defined our blueprint. It’s time to extend our Flask app with it by registering it.

facebook/init.py

from flask import Flask
from .views.profile import profile

app = Flask(__name__)
app.register_blueprint(profile)

Now the routes defined in facebook/views/profile.py (e.g. /<user_url_slug>) are registered on the application, and act just as if you’d defined them with @app.route().

Using a dynamic URL prefix

Continuing with the Facebook example, notice how all of the profile routes start with the <user_url_slug> portion and pass that value to the view. We want users to be able to access a profile by going to a URL like http://facebook.com/john.doe. We can stop repeating ourselves by defining a dynamic prefix for all of the blueprint’s routes.

Blueprints let us define both static and dynamic prefixes. We can tell Flask that all of the routes in a blueprint should be prefixed with /profile for example; that would be a static prefix. In the case of the Facebook example, the prefix is going to change based on which profile the user is viewing. Whatever text they choose is the URL slug of the profile which we should display; this is a dynamic prefix.

We have a choice to make when defining our prefix. We can define the prefix in one of two places: when we instantiate the Blueprint() class or when we register it with app.register_blueprint().

Here we are setting the url_prefix on instantiation:

facebook/views/profile.py

from flask import Blueprint, render_template

profile = Blueprint('profile', __name__, url_prefix='/<user_url_slug>')

[...]

Here we are setting the url_prefix on registration:

facebook/init.py

from flask import Flask
from .views.profile import profile

app = Flask(__name__)
app.register_blueprint(profile, url_prefix='/<user_url_slug>')

While there aren’t any technical limitations to either method, it’s nice to have the prefixes available in the same file as the registrations. This makes it easier to move things around from the top-level. For this reason, I recommend the latter method.

We can use converters in the prefix, just like in route() calls. This includes any custom converters that we’ve defined. When doing this, we can automatically process the value passed in the blueprint-wide prefix. In this case we’ll want to grab the user object based on the URL slug passed into a view in our profile blueprint. We’ll do that by decorating a function with url_value_preprocessor().

facebook/views/profile.py

from flask import Blueprint, render_template, g

from ..models import User

The prefix is defined in facebook/__init__.py.
profile = Blueprint('profile', __name__)

@profile.url_value_preprocessor
def get_profile_owner(endpoint, values):
 query = User.query.filter_by(url_slug=values.pop('user_url_slug'))
 g.profile_owner = query.first_or_404()

@profile.route('/')
def timeline():
 return render_template('profile/timeline.html')

@profile.route('/photos')
def photos():
 return render_template('profile/photos.html')

@profile.route('/about')
def about():
 return render_template('profile/about.html')

We’re using the g object to store the profile owner and g is available in the Jinja2 template context. This means that for a barebones case all we have to do in the view is render the template. The information we need will be available in the template.

facebook/templates/profile/photos.html

{% extends "profile/layout.html" %}

{% for photo in g.profile_owner.photos.all() %}

{% endfor %}

{ SEE ALSO: The Flask documentation has a great tutorial on using this technique for internationalizing your URLs. http://flask.pocoo.org/docs/patterns/urlprocessors/#internationalized-blueprint-urls }

Using a dynamic subdomain

Many SaaS (Software as a Service) applications these days provide users with a subdomain from which to access their software. Harvest, for example, is a time tracking application for consultants that gives you access to your dashboard from yourname.harvestapp.com. Here I’ll show you how to get Flask to work with automatically generated subdomains like this.

For this section I’m going to use the example of an application that lets users create their own websites. Imagine that our app has three blueprints for distinct sections: the home page where users sign-up, the user administration panel where the user builds their website and the user’s website. Since these three parts are relatively unconnected, we’ll organize them in a divisional structure.

sitemaker/
 __init__.py
 home/
 __init__.py
 views.py
 templates/
 home/
 static/
 home/
 dash/
 __init__.py
 views.py
 templates/
 dash/
 static/
 dash/
 site/
 __init__.py
 views.py
 templates/
 site/
 static/
 site/
 models.py

{ TABLE ME }

{ ENCODE BACKER NAME IN SUBDOMAIN }

	sitemaker.com/ : sitemaker/home - Just a vanilla blueprint. Views, templates and static files for index.html, about.html and pricing.html.

	bigdaddy.sitemaker.com : sitemaker/site - This blueprint uses a dynamic subdomain and includes the elements of the user’s website. We’ll go over some of the code used to implement this blueprint below.

	bigdaddy.sitemaker.com/admin : sitemaker/dash - This blueprint could use both a dynamic subdomain and a URL prefix by combining the techniques in this section with those from the previous section.

We can define our dynamic subdomain the same way we defined our URL prefix. Both options (in the blueprint directory or in the top-level init.py) are available, but once again we’ll keep the definitions in sitemaker/init.py.

sitemaker/init.py

from flask import Flask
from .site import site

app = Flask(__name__)
app.register_blueprint(site, subdomain='<site_subdomain>')

In a divisional structure, the blueprint will be defined in sitemaker/site/init.py.

sitemaker/site/__init__py

from flask import Blueprint

from ..models import Site

Note that the capitalized Site and the lowercase site
are two completely separate variables. Site is a model
and site is a blueprint.

site = Blueprint('site', __name__)

@site.url_value_preprocessor
def get_site(endpoint, values):
 query = Site.query.filter_by(subdomain=values.pop('site_subdomain'))
 g.site = query.first_or_404()

Import the views after site has been defined. The views module will need to import 'site' so we need to make sure that we import views after site has been defined.
import .views

Now we have the site information from the database that we’ll use to display the user’s site to the visitor who requests their subdomain.

To get Flask to work with subdomains, you’ll need to specify the SERVER_NAME configuration variable.

config.py

SERVER_NAME = 'sitemaker.com'

{ NOTE: A few minutes ago, as I was drafting this section, somebody in IRC said that their subdomains were working fine in development, but not in production. I asked if they had the SERVER_NAME configured, and it turned out that they had it in development but not production. Setting it in production solved their problem. See the conversation between myself (imrobert) and aplavin: http://dev.pocoo.org/irclogs/%23pocoo.2013-07-30.log }

{ NOTE: You can set both a subdomain and url_prefix. Think about how we would configure the blueprint in _sitemaker/dash_with the URL structure from the table above. }

Refactoring small apps to use blueprints

I’d like to go over a brief example of the steps we can take to convert an app to use blueprints. We’ll start off with a typical Flask app and restructure it.
{ ENCODE BACKER NAME? }
Here’s our growing app — called gnizama — that’s in need of some reorganization:

config.txt
requirements.txt
run.py
gnizama/
 __init__.py
 views.py
 models.py
 templates/
 static/
tests/

The views.py file has grown to 10,000 lines of code. We’ve been putting off refactoring it, but it’s finally time. The file contains views for all of the sections of our site. These sections are the home page, the user dashboard, the admin dashboard, the API and the company blog.

Step 1: Divisional or functional?

This application is made up of very distinct sections. Templates and static files probably aren’t going to be shared between blueprints, so we’ll go with a divisional structure.

Step 2: Move some files around

{ WARNING: Before you make any changes to your app, commit everything to version control. You don’t want to accidentally delete something for good. }

Next we’ll go ahead and create the directory tree for our new app. Start off by creating a folder for each blueprint within the package directory. Then copy views.py, static/ and templates in their entirety to each blueprint directory. You can then remove them from the top-level package directory.

config.txt
requirements.txt
run.py
gnizama/
 __init__.py
 home/
 views.py
 static/
 templates/
 dash/
 views.py
 static/
 templates/
 admin/
 views.py
 static/
 templates/
 api/
 views.py
 static/
 templates/
 blog/
 views.py
 static/
 templates/
 models.py
tests/

Step 3: Cut the crap

Now we can go into each blueprint and remove the views, static files and templates that don’t apply to that blueprint. How you go about this step largely depends on how you’re app was organized to begin with.

The end result should be that each blueprint has a views.py file with all of the views for that blueprint. No two blueprints should define a view for the same route. Each templates/ directory should only include the templates for the views in that blueprint. Each static/ directory should only include the static files that should be exposed by that blueprint.

{ NOTE: Make it a point to eliminate all unnecessary imports. It’s easy to forget about them, but at best they clutter your code and at worst they slow down your application. }

Step 4: Blueprint…ifi…cation or something of that nature

This is the part where we turn our directories into blueprints. The key is in the init.py files. For starters, let’s take a look at the definition of the API blueprint.

gnizama/api/init.py

from flask import Blueprint

api = Blueprint(
 'site',
 __name__,
 template_folder='templates',
 static_folder='static'
)

import .views

Then we can register this blueprint in the gnizama package’s top-level init.py file.

gnizama/init.py

from flask import Flask
from .api import api

app = Flask(__name__)

Puts the API blueprint on api.gnizama.com.
app.register_blueprint(api, subdomain='api')

Make sure that the routes are registered on the blueprint now rather than the app object. Here’s what an API route might have looked like in gnizama/views.py before we refactored our application:

gnizama/views.py

from . import app

@app.route('/search', subdomain='api')
def api_search():
 pass

In a blueprint it would look like this:

gnizama/api/views.py

from . import api

@api.route('/search')
def search():
 pass

Step 5: Enjoy

Now our application is far more modular than it was with one massive views.py file. The route definitions are simpler because we group them together into blueprints and configure things like subdomains and URL prefixes once for each blueprint.

Summary

	A blueprint is a collection of views, templates, static files and other extensions that can be applied to an application.

	Blueprints are a great way to organize your application.

	A divisional structure is where each blueprint is a collection of views, templates and static files which constitute a particular section of your application.

	A functional structure is where each blueprint is just a collection of views. The templates are all kept together, as are the static files.

	To use a blueprint, you define it then register it on the application with Flask.register_blueprint()..

	You can define a dynamic URL prefix that will be applied to all routes in a blueprint.

	You can also define a dynamic subdomain for all routes in a blueprint.

	Refactoring a growing application to use blueprints can be done in five small steps.

 Templates

 [image: _images/8.png]Templates

Templates

While Flask doesn’t force you to use any particular templating language, it assumes that you’re going to use Jinja. Most of the developers in the Flask community use Jinja, and I recommend that you do the same. There are a few extensions that have been written to let you use other templating languages, but unless you have a good reason (not knowing Jinja yet is not a good reason!) stick with the default; you’ll save yourself a lot of time and headache.

{ NOTE: Almost all resources imply Jinj2 when they refer to “Jinja.” There was a Jinja1, but we be dealing with it here. When you see Jinja, we’re talking about this: http://jinja.pocoo.org/ }

{ SEE MORE: Here are a couple of those extensions for other templating languages.

	Flask-Genshi: http://pythonhosted.org/Flask-Genshi/

	Flask-Mako: http://pythonhosted.org/Flask-Mako/
}

A quick primer on Jinja

The Jinja documentation does a great job of explaining the syntax and features of the language. I won’t reiterate it all here, but I do want to make sure that you see this important note:

There are two kinds of delimiters. {% ... %} and {{ ... }}. The first one is used to execute statements such as for-loops or assign values, the latter prints the result of the expression to the template.

{ SOURCE: http://jinja.pocoo.org/docs/templates/#synopsis }

How to organize templates

So where do templates fit into our app? If you’ve been following along at home, you may have noticed that Flask is really flexible about where you put things. Templates are no exception. You may also notice that there’s usually a recommended place to put things. Two points for you. For templates, that place is in the package directory.

myapp/
 __init__.py
 models.py
 views/
 templates/
 static/
run.py
requirements.txt

Let’s take a closer look at that templates directory.

templates/
 layout.html
 index.html
 about.html
 profile/
 layout.html
 index.html
	photos.html
 admin/
 layout.html
 index.html
 analytics.html

The structure of the templates parallels the structure of the routes. The template for route myapp.com/admin/analytics is templates/admin/analytics.html. There are also some extra templates in there that won’t be rendered directly. The layout.html files are meant to be inherited by the other templates.

Inheritance

Much like Batman’s backstory, a well organized templates directory relies heavily on inheritance. The base template usually defines a generalized structure that all of the child templates will work within. In our example, layout.html is a base template and the other .html files are child templates.

You’ll generally have one top-level layout.html that defines the general layout for your application and one for each section of your site. If you take a look at the directory above, you’ll see that there is a top-level myapp/templates/layout.html as well as myapp/templates/profile/layout.html and myapp/templates/admin/layout.html. The last two files inherit and modify the first.

Inheritance is implemented with the {% extends %} and {% block %} tags. In the parent template, you can define blocks which will be populated by child templates.

myapp/templates/layout.html

<!DOCTYPE html>
<html lang="en">
	<head>
 	<title>{% block title %}{% endblock %}</title>
 </head>
 <body>
 {% block body %}
 	<h1>This heading is defined in the parent.</h1>
 {% endblock %}
 </body>
</html>

In the child template, you can extend the parent template and define the contents of those blocks.

myapp/templates/index.html

{% extends "layout.html" %}
{% block title %}Hello world!{% endblock %}
{% block body %}
	{{ super() }}
 <h2>This heading is defined in the child.</h2>
{% endblock %}

The super() function lets us include the current contents of the block when we redefined them in the child.

{ SEE ALSO: For more information on inheritance, refer to the Jinja Template Inheritence documentation.

	http://jinja.pocoo.org/docs/templates/#template-inheritance
}

Creating macros

We can implement DRY (Don’t Repeat Yourself) principles in our templates by abstracting snippets of code that appear over and over into macros. If we’re working on some HTML for our app’s navigation, we might want to give a different class to the “active” link (i.e. the link to the current page). Without macros we’d end up with a block of if/else statements checking each link to find the acive one. Macros provide a way to modularize that code; they work like functions. Let’s look at how we’d mark the active link using a macro.

myapp/templates/layout.html

{% from "macros.html" import nav_link with context %}
<!DOCTYPE html>
<html lang="en">
 <head>
 {% block head %}
 <title>My application</title>
 {% endblock %}
 </head>
 <body>
 <ul class="nav-list">
 {{ nav_link('home', 'Home') }}
 {{ nav_link('about', 'About') }}
 {{ nav_link('contact', 'Get in touch') }}

 {% block body %}
 {% endblock %}
 </body>
</html>

What we are doing is calling an undefined macro — nav_link — and passing it two parameters: the target endpoint (i.e. the function name for the target view) and the text we want to show.

{ NOTE: You may notice that we specified “with context” in the import statement. The Jinja context consists of the arguments passed to the render_template() function as well as the Jinja environment context from our Python code. These variables are made available in the template that is being rendered. Some variables are explicitly passed by us, e.g. render_template("index.html", color="red"), but there are several variables and functions that Flask automatically includes in the context , e.g. request, g and session. When we say {% from ... import ... with context %} we are telling Jinja to make all of these variables available to the macro as well.

}

{ SEE ALSO:

	All of the global variables that are passed to the Jinja context by Flask: http://flask.pocoo.org/docs/templating/#standard-context}

	We can define variables and functions that we want to be merged into the Jinja context with context processors: http://flask.pocoo.org/docs/templating/#context-processors }

Now let’s take a look at the macro itself:

myapp/templates/macros.html

{% macro nav_link(endpoint, text) %}
{% if request.endpoint.endswith(endpoint) %}
 <li class="active">{{text}}
{% else %}
 {{text}}
{% endif %}
{% endmacro %}

Now we’ve defined the macro in myapp/templates/macros.html. What we’re doing is using Flask’s request object — which is available in the Jinja context by default — to check whether or not the current request was routed to the endpoint passed to nav_link. If it was, than we’re currently on that page, and we can mark it as active.

{ NOTE: The from x import y statement takes a relative path for x. If our template was in myapp/templates/user/blog.html we would use from "../macros.html" import nav_link with context.
}

Custom filters

Jinja filters are functions that can be applied to the result of an expression in the {{ ... }} delimeters before that result is printed to the template. Here’s a look at the syntax:

<h2>{{ article.title|title }}</h2>

In this snippet, the title filter will take article.title and return a title-cased version, which will then be printed to the template. The syntax, and functionality, is very much like the UNIX practice of “piping” the output of one program to another.

{ SEE MORE: There are loads of built-in filters like title. See the full list here: http://jinja.pocoo.org/docs/templates/#builtin-filters }

We can define our own filters for use in our Jinja templates. As an example, we’ll implement a simple caps filter to capitalize all of the letters in a string.

{ NOTE: Jinja already has an upper filter that does this, as well as a capitalize filter that capitalizes the first character and lowercases the rest. These also handle unicode conversion, but we’ll keep our example focused on the concept at hand.}

We’re going to define our filter in a module located at myapp/util/filters.py. This gives us a util package in which to put other miscellaneous modules.

myapp/util/filters.py

from .. import app

@app.template_filter()
def caps(text):
 """Convert a string to all caps."""
 return text.uppercase()

We are registering our function as a Jinja filter by using the @app.template_filter() decorator. The default filter name is just the name of the function, but you can pass an argument to the decorator to change that:

@app.template_filter('make_caps')
def caps(text):
 """Convert a string to all caps."""
 return text.uppercase()

Now we can call make_caps in the template rather than caps: {{ "hello world!"|make_caps }}.

To make our filter available in the templates, we just need to import it in our top-level __init.py.

myapp/init.py

Make sure app has been initialized first to prevent circular imports.
from .util import filters

Summary

	Use Jinja for templating.

	Jinja has two kinds of delimeters: {% ... %} and {{ ... }}. The first one is used to execute statements such as for-loops or assign values, the latter prints the result of the contained expression to the template.

	Templates should go in myapp/templates/ — i.e. a directory inside of the application package.

	I recommend that the structure of the templates/ directory mirror the URL structure of the app.

	You should have a top-level layout.html in myapp/templates as well as one for each section of the site. The former extend the latter.

	Macros are like functions made-up of template code.

	Filters are functions made-up of Python code and used in templates.

 <no title>

 [image: _images/cover.png]The cover

 Release notes

Release notes

This is version 0.01 of Explore Flask. This version consists of the first 7 chapters of what will be the final book.

I’m going to be updating things and adding chapters to the release as they come. I’m hoping that by releasing early and iterating on a public project I’ll be able to incorporate reader feedback into this before I release version 1.0.

Once I reach 1.0 I’ll make the book available in print editions, convert to other formats and do all of the other polishing up that is expected of a published book. For now though, I present a rough version of the final book.

With that said, I’m waiting until I feel like each chapter is ready before including them in a release, even an early one. The content of the book so far isn’t in the first draft state, but it’s not quite finished either. It still needs some polishing up.

In 0.01 there are still a lot of questions of formatting. Informational boxes, tables and images aren’t in their final form. There are some author’s notes left throughout as well.

If you have feedback, the book is being developed openly on GitHub: https://github.com/rpicard/explore-flask. I welcome bug reports and pull requests. You can also send me an email at robert@exploreflask.com.

I hope that despite it’s rough state, you’ll still enjoy the content of Explore Flask.

Thank you

First of all, I’d like to say thank you to my volunteer editor, Will Kahn-Greene. He’s been great about going over my very rough drafts and helping me decide on the scope and direction of the content.

Another big thanks to everyone who took the time to talk with me about how they are using Flask. This includes Armin Ronacher (Flask creator), Mark Harviston (Elsevier), Glenn Yonemitsu (Markup Hive), Andy Parsons (Happify), Oleg Lavrovsky (Apps with love), Joel Anderson (Cloudmancer) and Mahmoud Abdelkader (Balanced).

Explore Flask wouldn’t be happening if it weren’t for the hundreds of people who backed my Kickstarter. As promised in the Kickstarter, here are the names of all of the generous men and women who pledged $50 or more:

	Balanced Payments (https://balancedpayments.com) {THEY GET A LOGO IN HERE TOO}

	CodeLesson (http://codelesson.com)

	Sam Black

	Michał Bartoszkiewicz

	Chad Catlett

	Jacob Kaplan-Moss

	John {LAST NAME?}

	Zach White

	Dorothy L. Erwin

	Brandon Brown