

Explore Flask

Explore Flask is a book about best practices and patterns for developing
web applications with Flask [http://flask.pocoo.org/]. The book was funded
by 426 backers on Kickstarter [https://www.kickstarter.com/projects/1223051718/practical-flask-book-project]
in July 2013.

I finally released the book, after spending almost a year working on it. Almost immediately
I was tired of managing distribution and limiting the book’s audience by putting
it behind a paywall. I didn’t write a book to run a business, I wrote it to
put some helpful content out there and help grow the Flask community.

In June of 2014, soon after finishing the book, I reformatted
it for the web and released it here for free. No payment or donation or anything
required. Just enjoy!

About the author

My name is Robert Picard. In the seven years since writing this book I’ve established a career in information security and now I’m creating Crucial Detection [https://www.crucialdetection.com] to help companies detect compromised employee accounts.

I like Flask for its simplicity in the face of frameworks like Django that
try and be everything to everyone. That model works for a lot of people, but not for me.

If you want to get in touch, feel free to send me an email at robert@robert.io. If you have
feedback on the book, check out the GitHub repository [https://github.com/rpicard/explore-flask] too.

Contents

	Preface
	Assumptions

	Living document

	Conventions used in this book

	Easter eggs

	Summary

	Coding conventions
	Let’s have a PEP rally!

	Relative imports

	Summary

	Environment
	Use virtualenv to manage your environment

	Version control

	Debugging

	Summary

	Organizing your project
	Definitions

	Organization patterns

	Summary

	Configuration
	The simple case

	Instance folder

	Configuring based on environment variables

	Summary

	Advanced patterns for views and routing
	View decorators

	URL Converters

	Summary

	Blueprints
	What is a blueprint?

	Why would you use blueprints?

	Where do you put them?

	How do you use them?

	Refactoring small apps to use blueprints

	Summary

	Templates
	A quick primer on Jinja

	How to organize templates

	Inheritance

	Creating macros

	Custom filters

	Summary

	Static files
	Organizing your static files

	Manage static assets with Flask-Assets

	Summary

	Storing data
	SQLAlchemy

	Summary

	Handling forms
	Flask-WTF

	Summary

	Patterns for handling users
	Email confirmation

	Storing passwords

	Authentication

	Forgot your password

	Summary

	Deployment
	The Host

	The stack

	Summary

	Conclusion

Thank you

First of all, I’d like to say thank you to my volunteer editor, Will
Kahn-Greene. He was great about going over my very rough drafts and
helping me decide on the scope and direction of the content. I’m looking
forward to working with him to manage the project into the future.

Another big thanks to everyone who took the time to talk with me about
how they are using Flask. This includes Armin Ronacher (Flask creator),
Mark Harviston (Elsevier), Glenn Yonemitsu (Markup Hive), Andy Parsons
(Happify), Oleg Lavrovsky (Apps with love), Joel Anderson (Cloudmancer)
and Mahmoud Abdelkader (Balanced).

The cover and all the illustrations in this book were done by Dominic
Flask [http://www.dangerdom.com/].

Explore Flask wouldn’t be happening if it weren’t for the hundreds of
people who backed the project on Kickstarter. A big thanks to a particularly
generous sponsor, Balanced Payments [https://balancedpayments.com]:

[image: Balanced Payments]
As promised in the Kickstarter project, here are the names of all of the generous men and women who pledged $50 or more:

CodeLesson, Sam Black, Michał Bartoszkiewicz, Chad Catlett, Jacob
Kaplan-Moss, John Schrom, Zach White, Dorothy L. Erwin, Brandon Brown,
Fredrik Larsson, Karsten Hoffrath (khoffrath), Jonathan Chen, Mitch
Wainer, John Cleaver, Paul Baines, Brandon Bennett, Gaelan Adams, Nick
Charlton, Dustin Chapman and Senko Rašić.

License

In the spirit of open source software, I’m placing all of the content in this book in the public domain.

Have fun with it.

Contributing

The project is hosted on GitHub [https://github.com/rpicard/explore-flask] and pull requests are welcome!

Preface

This book is a collection of the best practices for using Flask. There
are a lot of pieces to the average Flask application. You’ll often need
to interact with a database and authenticate users, for example. In the
coming pages I’ll do my best to explain the “right way” to do this sort
of stuff. My recommendations aren’t always going to apply, but I’m
hoping that they’ll be a good option most of the time.

Assumptions

In order to present you with more specific advice, I’ve written this
book with a few fundamental assumptions. It’s important to keep this in
mind when you’re reading and applying these recommendations to your own
projects.

Audience

The content of this book builds upon the information in the official
documentation. I highly recommend that you go through the user guide [http://flask.pocoo.org/docs/#user-s-guide] and
follow along with the tutorial [http://flask.pocoo.org/docs/tutorial/]. This will give you a chance to become
familiar with the vocabulary of Flask. You should understand what views
are, the basics of Jinja templating and other fundamental concepts
defined for beginners. I’ve tried to avoid overlap with the information
already available in the user guide, so if you read this book first,
there’s a good chance that you’ll find yourself lost (is that an
oxymoron?).

With all of that said, the topics in this book aren’t highly advanced.
The goal is just to highlight best practices and patterns that will make
development easier for you. While I’m trying to avoid too much overlap
with the official documentation, you may find that I reiterate certain
concepts to make sure that they’re familiar. You shouldn’t need to have
the beginner’s tutorial open while you read this.

Versions

Python 2 versus Python 3

As I write this, the Python community is in the midst of a transition
from Python 2 to Python 3. The official stance of the Python Software
Foundation is as follows:

Python 2.x is the status quo, Python 3.x is the present and future of the language. 1

As of version 0.10, Flask runs with Python 3.3. When I asked Armin
Ronacher about whether new Flask apps should begin using Python 3, he
said that he’s not yet recommending it to people.

I’m not using it myself currently, and I don’t ever recommend to people things that I don’t believe in myself, so I’m very cautious about recommending Python 3.

—Armin Ronacher, creator of Flask 2

One reason for holding off on Python 3 is that many common dependencies
haven’t been ported yet. You don’t want to build a project around Python
3 only to realize a few months down the line that you can’t use packages
X, Y and Z. It’s possible that eventually Flask will officially
recommend Python 3 for new projects, but for now it’s all about Python
2.

Note

The Python 3 Wall of Superpowers [https://python3wos.appspot.com/] tracks which major Python packages have been ported to Python 3.

Since this book is meant to provide practical advice, I think it makes
sense to write with the assumption of Python 2. Specifically, I’ll be
writing the book with Python 2.7 in mind. Future updates may very well
change this to evolve with the Flask community, but for now 2.7 is where
we stand.

Flask version 0.10

At the time of writing this, 0.10 is the latest version of Flask (0.10.1
to be exact). Most of the lessons in this book aren’t going to change
with minor updates to Flask, but it’s something to keep in mind
nonetheless.

Living document

The content of this books is going to be updated on the fly, rather than with
periodic releases. That is one of the benefits of putting the content out
there for free, rather than putting it behind a walled garden. The web is a
much more fluid distribution channel than print or even PDFs.

The book’s source is hosted on GitHub [https://github.com/rpicard/explore-flask]
and that is where “development” will be happening. Contributions and ideas are
always welcome!

Conventions used in this book

Each chapter stands on its own

Each chapter in this book is an isolated lesson. Many books and
tutorials are written as one long lesson. Generally this means that an
example program or application is created and updated throughout the
book to demonstrate concepts and lessons. Instead, examples are included
in each lesson to demonstrate the concepts, but the examples from
different chapters aren’t meant to be combined into one large project.

Formatting

Footnotes will be used for citations so you don’t think I’m making
things up. 3

Italic text will be used to denote a file name.

Bold text will be used to denote a new or important term.

Warning

Common pitfalls that could cause major problems will be shown in a warning box.

Note

Supplemental information will appear in note boxes.

Easter eggs

Six backer names from the Kickstarter campaign have been encoded and
sprinkled around the book. If you find all six and email the locations
to me, I’ll send you an extraordinarily mediocre prize. No hints.

Summary

	This book contains recommendations for using Flask.

	I’m assuming that you’ve gone through the Flask tutorial.

	I’m using Python 2.7.

	I’m using Flask 0.10.

	I’ll do my best to keep the content of the book up-to-date.

	Each chapter in this book stands on its own.

	There are a few ways that I’ll use formatting to convey additional
information about the content.

	Summaries will appear as concise lists of takeaways from the
chapters.

	1

	Source: The Python wiki [http://wiki.python.org/moin/Python2orPython3]

	2

	Source: My conversation with Armin Ronacher [https://www.youtube.com/watch?feature=player_detailpage&v=fs20qdvm0K4#t=190]

	3

	See, it must be true!

Coding conventions

[image: Coding conventions]
There are a number of conventions in the Python community to guide the
way you format your code. If you’ve been developing with Python for a
while, then you might already be familiar with some of these
conventions. I’ll keep things brief and leave a few URLs where you can
find more information if you haven’t come across these topics before.

Let’s have a PEP rally!

A PEP is a “Python Enhancement Proposal.” These proposals are
indexed and hosted at python.org. In the index, PEPs are grouped into a
number of categories, including meta-PEPs, which are more informational
than technical. The technical PEPs, on the other hand, often describe
things like improvements to Python’s internals.

There are a few PEPs, like PEP 8 and PEP 257 that are meant to guide the
way we write our code. PEP 8 contains coding style guidelines. PEP 257
contains guidelines for docstrings, the generally accepted method of
documenting code.

PEP 8: Style Guide for Python Code

PEP 8 is the official style guide for Python code. I recommend that you
read it and apply its recommendations to your Flask projects (and all of
your other Python code). Your code will be much more approachable when
it starts growing to many files with hundreds, or thousands, of lines of
code. The PEP 8 recommendations are all about having more readable code.
Plus, if your project is going to be open source, potential contributors
will likely expect and be comfortable working on code written with PEP 8
in mind.

One particularly important recommendation is to use 4 spaces per
indentation level. No real tabs. If you break this convention, it’ll be
a burden on you and other developers when switching between projects.
That sort of inconsistency is a pain in any language, but white-space is
especially important in Python, so switching between real tabs and
spaces could result in any number of errors that are a hassle to debug.

PEP 257: Docstring Conventions

PEP 257 covers another Python standard: docstrings. You can read the
definition and recommendations in the PEP itself, but here’s an example
to give you an idea of what a docstring looks like:

def launch_rocket():
 """Main launch sequence director.

 Locks seatbelts, initiates radio and fires engines.
 """
 # [...]

These kinds of docstrings can be used by software such as Sphinx to
generate documentation files in HTML, PDF and other formats. They also
make it easier to understand your code.

Note

	PEP 8 [http://legacy.python.org/dev/peps/pep-0008/]

	PEP 257 [http://legacy.python.org/dev/peps/pep-0257/]

	Sphinx [http://sphinx-doc.org/], the documentation generator created by the same folks who brought us Flask

Relative imports

Relative imports make life a little easier when developing Flask apps.
The premise is simple. Let’s say you want to import the User model
from the module myapp/models.py. You might think to use the app’s
package name, i.e. myapp.models. Using relative imports, you would
indicate the location of the target module relative to the source. To do
this we use a dot notation where the first dot indicates the current
directory and each subsequent dot represents the next parent directory.
Listing~ illustrates the diffence in syntax.

myapp/views.py

An absolute import gives us the User model
from myapp.models import User

A relative import does the same thing
from .models import User

The advantage of this method is that the package becomes a heck of a lot
more modular. Now you can rename your package and re-use modules from
other projects without the need to update the hard-coded import
statements.

In my research I came across a Tweet that illustrates the benefit of
relative imports.

Just had to rename our whole package. Took 1 second. Package relative imports FTW!

—David Beazley, @dabeaz [https://twitter.com/dabeaz/status/372059407711887360]

Note

You can read a little more about the syntax for relative imports from this section in PEP 328 [http://www.python.org/dev/peps/pep-0328/#guido-s-decision].

Summary

	Try to follow the coding style conventions laid out in PEP 8.

	Try to document your app with docstrings as defined in PEP 257.

	Use relative imports to import your app’s internal modules.

Environment

[image: Environment]
Your application is probably going to require a lot of software to
function properly. If it doesn’t at least require the Flask package, you
may be reading the wrong book. Your application’s environment is
essentially all of the things that need to be around when it runs. Lucky
for us, there are a number of things that we can do to make managing our
environment much less complicated.

Use virtualenv to manage your environment

virtualenv [http://www.virtualenv.org/en/latest/] is a tool for isolating your application in what is called a
virtual environment. A virtual environment is a directory that
contains the software on which your application depends. A virtual
environment also changes your environment variables to keep your
development environment contained. Instead of downloading packages, like
Flask, to your system-wide — or user-wide — package directories, we can
download them to an isolated directory used only for our current
application. This makes it easy to specify which Python binary to use
and which dependencies we want to have available on a per project basis.

Virtualenv also lets you use different versions of the same package for
different projects. This flexibility may be important if you’re working
on an older system with several projects that have different version
requirements.

When using virtualenv, you’ll generally have only a few Python packages
installed globally on your system. One of these will be virtualenv
itself. You can install the virtualenv package with Pip.

Once you have virtualenv on your system, you can start creating virtual
environments. Navigate to your project directory and run the
virtualenv command. It takes one argument, which is the destination
directory of the virtual environment. Listing~ shows what this looks
like.

$ virtualenv venv
New python executable in venv/bin/python
Installing Setuptools...........[...].....done.
Installing Pip..................[...].....done.
$

virtualenv creates a new directory where the dependencies will be
installed.

Once the new virtual environment has been created, you must activate it
by sourcing the bin/activate script that was created inside the
virtual environment.

$ which python
/usr/local/bin/python
$ source venv/bin/activate
(venv)$ which python
/Users/robert/Code/myapp/venv/bin/python

The bin/activate script makes some changes to your shell’s environment variables so that everything points to the new virtual environment instead of your global system. You can see the effect in code block above. After activation, the python command refers to the Python binary inside the virtual environment. When a virtual environment is active, dependencies installed with Pip will be downloaded to that virtual environment instead of the global system.

You may notice that the shell prompt has been changed too. virtualenv prepends the name of the currently activated virtual environment, so you know that you’re not working on the global system.

You can deactivate your virtual environment by running the deactivate command.

(venv)$ deactivate
$

virtualenvwrapper

virtualenvwrapper [http://virtualenvwrapper.readthedocs.org/en/latest/] is a package used to manage the virtual environments created by virtualenv. I didn’t want to mention this tool until you had seen the basics of virtualenv so that you understand what it’s improving upon and understand why you should use it.

That virtual environment directory created in Listing~ref{code:venv_create} adds clutter to your project repository. You only interact with it directly when activating the virtual environment and it shouldn’t be in version control, so there’s no need to have it in there. The solution is to use virtualenvwrapper. This package keeps all of your virtual environments out of the way in a single directory, usually _~/.virtualenvs/_ by default.

To install virtualenvwrapper, follow the instructions in the documentation.

Warning

Make sure that you’ve deactivated all virtual environments before installing virtualenvwrapper. You want it installed globally, not in a pre-existing environment.

Now, instead of running virtualenv to create an environment, you’ll run mkvirtualenv:

$ mkvirtualenv rocket
New python executable in rocket/bin/python
Installing setuptools...........[...].....done.
Installing pip..................[...].....done.
(rocket)$

mkvirtualenv creates a directory in your virtual environments folder and activates it for you. Just like with plain old virtualenv, python and pip now point to that virtual environment instead of the system binaries. To activate a particular environment, use the command: workon [environment name]. deactivate still deactivates the environment.

Keeping track of dependencies

As a project grows, you’ll find that the list of dependencies grows with it. It’s not uncommon to need dozens of Python packages installed to run a Flask application. The easiest way to manage these is with a simple text file. Pip can generate a text file listing all installed packages. It can also read in this list to install each of them on a new system, or in a freshly minted environment.

pip freeze

requirements.txt is a text file used by many Flask applications to list all of the packages needed to run an application. This code block shows how to create this file and the following one shows how to use that text file to install your dependencies in a new environment.

(rocket)$ pip freeze > requirements.txt

$ workon fresh-env
(fresh-env)$ pip install -r requirements.txt
[...]
Successfully installed flask Werkzeug Jinja2 itsdangerous markupsafe
Cleaning up...
(fresh-env)$

Manually tracking dependencies

As your project grows, you may find that certain packages listed by
pip freeze aren’t actually needed to run the application. You’ll
have packages that are installed for development only. pip freeze
doesn’t discriminate between the two, it just lists the packages that
are currently installed. As a result, you may want to manually track
your dependencies as you add them. You can separate those packages needed
to run your application and those needed to develop your application
into require_run.txt and require_dev.txt respectively.

Version control

Pick a version control system and use it. I recommend Git. From what
I’ve seen, Git is the most popular choice for new projects these days.
Being able to delete code without worrying about making an irreversible
mistake is invaluable. You’ll be able to keep your project free of those
massive blocks of commented out code, because you can delete it now and
revert that change later should the need arise. Plus, you’ll have backup
copies of your entire project on GitHub, Bitbucket or your own Gitolite
server.

What to keep out of version control

I usually keep a file out of version control for one of two reasons.
Either it’s clutter, or it’s a secret. Compiled .pyc files and virtual
environments — if you’re not using virtualenvwrapper for some reason
— are examples of clutter. They don’t need to be in version control
because they can be recreated from the .py files and your
requirements.txt files respectively.

API keys, application secret keys and database credentials are examples
of secrets. They shouldn’t be in version control because their exposure
would be a massive breach of security.

Note

When making security related decisions, I always like to assume that my repository will become public at some point. This means keeping secrets out and never assuming that a security hole won’t be found because, “Who’s going to guess that they can do that?” This kind of assumption is known as security by obscurity and it’s a bad policy to rely on.

When using Git, you can create a special file called .gitignore in
your repository. In it, list wildcard patterns to match
against filenames. Any filename that matches one of the patterns will be
ignored by Git. I recommend using the .gitignore shown in Listing~ to
get you started.

*.pyc
instance/

Instance folders are used to make secret configuration variables
available to your application in a more secure way. We’ll talk more
about them later.

Note

You can read more about .gitignore here: http://git-scm.com/docs/gitignore

Debugging

Debug Mode

Flask comes with a handy feature called debug mode. To turn it on, you
just have to set debug = True in your development configuration.
When it’s on, the server will reload on code changes and errors will
come with a stack trace and an interactive console.

Warning

Take care not to enable debug mode in production. The interactive console enables arbitrary code execution and would be a massive security vulnerability if it was left on in the live site.

Flask-DebugToolbar

Flask-DebugToolbar [http://flask-debugtoolbar.readthedocs.org/en/latest/] is another great tool for debugging problems with
your application. In debug mode, it overlays a side-bar onto every page
in your application. The side bar gives you information about SQL
queries, logging, versions, templates, configuration and other fun stuff
that makes it easier to track down problems.

Note

	Take a look at the quick start section on debug mode [http://flask.pocoo.org/docs/quickstart/#debug-mode].

	There is some good information on handling errors, logging and working with other debuggers in the flask docs [http://flask.pocoo.org/docs/errorhandling].

Summary

	Use virtualenv to keep your application’s dependencies together.

	Use virtualenvwrapper to keep your virtual environments together.

	Keep track of dependencies with one or more text files.

	Use a version control system. I recommend Git.

	Use .gitignore to keep clutter and secrets out of version control.

	Debug mode can give you information about problems in development.

	The Flask-DebugToolbar extension will give you even more of that
information.

Organizing your project

[image: Organizing your project]
Flask leaves the organization of your application up to you. This is one
of the reasons I liked Flask as a beginner, but it does mean that you
have to put some thought into how to structure your code. You could put
your entire application in one file, or have it spread across multiple
packages. There are a few organizational patterns that you can follow to
make development and deployment easier.

Definitions

Let’s define some of the terms that we’ll run into in this chapter.

Repository - This is the base folder where your applications sits.
This term traditionally refers to version control systems, which you
should be using. When I refer to your repository in this chapter, I’m
talking about the root directory of your project. You probably won’t
need to leave this directory when working on your application.

Package - This refers to a Python package that contains your
application’s code. I’ll talk more about setting up your app as a
package in this chapter, but for now just know that the package is a
sub-directory of the repository.

Module - A module is a single Python file that can be imported by
other Python files. A package is essentially multiple modules packaged
together.

Note

	Read more about Python modules in Python tutorial [http://docs.python.org/2/tutorial/modules.html].

	That same page has a section on packages [http://docs.python.org/2/tutorial/modules.html#packages].

Organization patterns

Single module

A lot of the Flask examples that you’ll come across will keep all of the
code in a single file, often app.py. This is great for quick projects
(like the ones used for tutorials), where you just need to serve a few
routes and you’ve got less than a few hundred lines of application code.

app.py
config.py
requirements.txt
static/
templates/

Application logic would sit in app.py for the example in Listing~.

Package

When you’re working on a project that’s a little more complex, a single
module can get messy. You’ll need to define classes for models and
forms, and they’ll get mixed in with the code for your routes and
configuration. All of this can frustrate development. To solve this
problem, we can factor out the different components of our app into a
group of inter-connected modules — a package.

config.py
requirements.txt
run.py
instance/
 config.py
yourapp/
 __init__.py
 views.py
 models.py
 forms.py
 static/
 templates/

The structure shown in this listing allows you to group the different
components of your application in a logical way. The class definitions
for models are together in models.py, the route definitions are in
views.py and forms are defined in forms.py (we have a whole chapter
for forms later).

This table provides a basic rundown of the components you’ll find in most
Flask applications. You’ll probably end up with a lot of other files in
your repository, but these are common to most Flask applications.

	run.py

	This is the file that is invoked to start up a development
server. It gets a copy of the app from your package and runs
it. This won’t be used in production, but it will see a lot
of mileage in development.

	requirements.txt

	This file lists all of the Python packages that your app
depends on. You may have separate files for production and
development dependencies.

	config.py

	This file contains most of the configuration variables that
your app needs.

	/instance/config.py

	This file contains configuration variables that shouldn’t
be in version control. This includes things like API keys
and database URIs containing passwords. This also contains
variables that are specific to this particular instance of
your application. For example, you might have DEBUG = False
in config.py, but set DEBUG = True in instance/config.py on
your local machine for development. Since this file will be
read in after config.py, it will override it and set
DEBUG = True.

	/yourapp/

	This is the package that contains your application.

	/yourapp/__init__.py

	This file initializes your application and brings together
all of the various components.

	/yourapp/views.py

	This is where the routes are defined. It may be split into
a package of its own (yourapp/views/) with related
views grouped together into modules.

	/yourapp/models.py

	This is where you define the models of your application.
This may be split into several modules in the same way as
views.py.

	/yourapp/static/

	This directory contains the public CSS, JavaScript, images and
other files that you want to make public via your app. It
is accessible from yourapp.com/static/ by default.

	/yourapp/templates/

	This is where you’ll put the Jinja2 templates for your app.

Blueprints

At some point you may find that you have a lot of related routes. If
you’re like me, your first thought will be to split views.py into a
package and group those views into modules. When you’re at this point,
it may be time to factor your application into blueprints.

Blueprints are essentially components of your app defined in a somewhat
self-contained manner. They act as apps within your application. You
might have different blueprints for the admin panel, the front-end and
the user dashboard. This lets you group views, static files and
templates by components, while letting you share models, forms and other
aspects of your application between these components. We’ll talk about
using Blueprints to organize your application soon.

Summary

	Using a single module for your application is good for quick
projects.

	Using a package for your application is good for projects with views,
models, forms and other components.

	Blueprints are a great way to organize projects with several distinct
components.

Configuration

[image: Configuration]
When you’re learning Flask, configuration seems simple. You just define
some variables in config.py and everything works. That simplicity
starts to fade away when you have to manage configuration for a
production application. You may need to protect secret API keys or use
different configurations for different environments (e.g. development
and production environments). In this chapter we’ll go over some
advanced Flask features that makes this managing configuration easier.

The simple case

A simple application may not need any of these complicated features. You
may just need to put config.py in the root of your repository and load
it in app.py or yourapp/__init__.py

The config.py file should contain one variable assignment per line.
When your app is initialized, the variables in config.py are used to
configure Flask and its extensions are accessible via the app.config
dictionary – e.g. app.config["DEBUG"].

DEBUG = True # Turns on debugging features in Flask
BCRYPT_LOG_ROUNDS = 12 # Configuration for the Flask-Bcrypt extension
MAIL_FROM_EMAIL = "robert@example.com" # For use in application emails

Configuration variables can be used by Flask, extensions or you. In this
example, we could use app.config["MAIL_FROM_EMAIL"] whenever we
needed the default “from” address for a transactional email – e.g.
password resets. Putting that information in a configuration variable
makes it easy to change it in the future.

app.py or app/__init__.py
from flask import Flask

app = Flask(__name__)
app.config.from_object('config')

Now we can access the configuration variables via app.config["VAR_NAME"].

	Variable

	Decription

	Recommendation

	DEBUG

	Gives you some handy tools for debugging errors.
This includes a web-based stack trace and
interactive Python console for errors.

	Should be set to True in development and
False in production.

	SECRET_KEY

	This is a secret key that is used by Flask to
sign cookies. It’s also used by extensions like
Flask-Bcrypt. You should define this in your
instance folder to keep it out of version
control. You can read more about instance folders
in the next section.

	This should be a complex random value.

	BCRYPT_LOG_ROUNDS

	If you’re using Flask-Bcrypt to hash user
passwords, you’ll need to specify the number of
“rounds” that the algorithm executes in hashing a
password. If you aren’t using Flask-Bcrypt, you
should probably start. The more rounds used to
hash a password, the longer it’ll take for an
attacker to guess a password given the hash. The
number of rounds should increase over time as
computing power increases.

	Later in this book we’ll cover some of the
best practices for using Bcrypt in your
Flask application.

Warning

Make sure DEBUG is set to False in production. Leaving it on will allow users to run arbitrary Python code on your server.

Instance folder

Sometimes you’ll need to define configuration variables that contain
sensitive information. We’ll want to separate these variables from those
in config.py and keep them out of the repository. You may be hiding
secrets like database passwords and API keys, or defining variables
specific to a given machine. To make this easy, Flask gives us a feature
called instance folders. The instance folder is a sub-directory of
the repository root and contains a configuration file specifically for
this instance of the application. We don’t want to commit it into
version control.

config.py
requirements.txt
run.py
instance/
 config.py
yourapp/
 __init__.py
 models.py
 views.py
 templates/
 static/

Using instance folders

To load configuration variables from an instance folder, we use
app.config.from_pyfile(). If we set
instance_relative_config=True when we create our app with the
Flask() call, app.config.from_pyfile() will load the
specified file from the instance/ directory.

app.py or app/__init__.py

app = Flask(__name__, instance_relative_config=True)
app.config.from_object('config')
app.config.from_pyfile('config.py')

Now, we can define variables in instance/config.py just like you did
in config.py. You should also add the instance folder to your version
control system’s ignore list. To do this with Git, you would add
instance/ on a new line in .gitignore.

Secret keys

The private nature of the instance folder makes it a great candidate for
defining keys that you don’t want exposed in version control. These may
include your app’s secret key or third-party API keys. This is
especially important if your application is open source, or might be at
some point in the future. We usually want other users and contributors
to use their own keys.

instance/config.py

SECRET_KEY = 'Sm9obiBTY2hyb20ga2lja3MgYXNz'
STRIPE_API_KEY = 'SmFjb2IgS2FwbGFuLU1vc3MgaXMgYSBoZXJv'
SQLALCHEMY_DATABASE_URI= \
"postgresql://user:TWljaGHFgiBCYXJ0b3N6a2lld2ljeiEh@localhost/databasename"

Minor environment-based configuration

If the difference between your production and development environments
are pretty minor, you may want to use your instance folder to handle the
configuration changes. Variables defined in the instance/config.py
file can override the value in config.py. You just need to make the
call to app.config.from_pyfile() after
app.config.from_object(). One way to take advantage of this is to
change the way your app is configured on different machines.

config.py

DEBUG = False
SQLALCHEMY_ECHO = False

instance/config.py
DEBUG = True
SQLALCHEMY_ECHO = True

In production, we would leave the variables in the above listing out of
instance/config.py and it would fall back to the values defined in
config.py.

Note

	Read more about Flask-SQLAlchemy’s configuration keys [http://flask-sqlalchemy.pocoo.org/latest/config/#configuration-keys]

Configuring based on environment variables

The instance folder shouldn’t be in version control. This means that you
won’t be able to track changes to your instance configurations. That
might not be a problem with one or two variables, but if you have finely
tuned configurations for various environments (production, staging,
development, etc.) you don’t want to risk losing that.

Flask gives us the ability to choose a configuration file on load based
on the value of an environment variable. This means that we can have
several configuration files in our repository and always load the right
one. Once we have several configuration files, we can move them to their
own config directory.

requirements.txt
run.py
config/
 __init__.py # Empty, just here to tell Python that it's a package.
 default.py
 production.py
 development.py
 staging.py
instance/
 config.py
yourapp/
 __init__.py
 models.py
 views.py
 static/
 templates/

In this listing we have a few different configuration files.

	config/default.py

	Default values, to be used for all environments or overridden by individual
environments. An example might be setting DEBUG = False in config/default.py
and DEBUG = True in config/development.py.

	config/development.py

	Values to be used during development. Here you might specify the URI of a
database sitting on localhost.

	config/production.py

	Values to be used in production. Here you might specify the URI for your
database server, as opposed to the localhost database URI used for
development.

	config/staging.py

	Depending on your deployment process, you may have a staging step where you
test changes to your application on a server that simulates a production
environment. You’ll probably use a different database, and you may want to
alter other configuration values for staging applications.

To decide which configuration file to load, we’ll call
app.config.from_envvar().

yourapp/__init__.py

app = Flask(__name__, instance_relative_config=True)

Load the default configuration
app.config.from_object('config.default')

Load the configuration from the instance folder
app.config.from_pyfile('config.py')

Load the file specified by the APP_CONFIG_FILE environment variable
Variables defined here will override those in the default configuration
app.config.from_envvar('APP_CONFIG_FILE')

The value of the environment variable should be the absolute path to a
configuration file.

How we set this environment variable depends on the platform in which
we’re running the app. If we’re running on a regular Linux server, we
can set up a shell script that sets our environment variables and runs
run.py.

start.sh

export APP_CONFIG_FILE=/var/www/yourapp/config/production.py
python run.py

start.sh is unique to each environment, so it should be left out of
version control. On Heroku, we’ll want to set the environment variables
with the Heroku tools. The same idea applies to other PaaS platforms.

Summary

	A simple app may only need one configuration file: config.py.

	Instance folders can help us hide secret configuration values.

	Instance folders can be used to alter an application’s configuration
for a specific environment.

	We should use environment variables and
app.config.from_envvar() for more complicated environment-based
configurations.

Advanced patterns for views and routing

[image: Advanced patterns for views and routing]

View decorators

Python decorators are functions that are used to transform other
functions. When a decorated function is called, the decorator is called
instead. The decorator can then take action, modify the arguments, halt
execution or call the original function. We can use decorators to wrap
views with code we’d like to run before they are executed.

@decorator_function
def decorated():
 pass

If you’ve gone through the Flask tutorial, the syntax in this code block might
look familiar to you. @app.route is a decorator used to match URLs
to view functions in Flask apps.

Let’s take a look at some other decorators you can use in your Flask
apps.

Authentication

The Flask-Login extension makes it easy to implement a login system. In
addition to handling the details of user authentication, Flask-Login
gives us a decorator to restrict certain views to authenticated users:
@login_required.

app.py

from flask import render_template
from flask_login import login_required, current_user

@app.route('/')
def index():
 return render_template("index.html")

@app.route('/dashboard')
@login_required
def account():
 return render_template("account.html")

Warning

@app.route should always be the outermost view decorator.

Only an authenticated user will be able to access the /dashboard
route. We can configure Flask-Login to redirect unauthenticated users to
a login page, return an HTTP 401 status or anything else we’d like it to
do with them.

Note

Read more about using Flask-Login in the official docs [http://flask-login.readthedocs.org/en/latest/].

Caching

Imagine that an article mentioning our application just appeared on CNN
and some other news sites. We’re getting thousands of requests per
second. Our homepage makes several trips to the database for each
request, so all of this attention is slowing things down to a crawl. How
can we speed things up quickly, so all of these visitors don’t miss out
on our site?

There are a lot of good answers, but this section is about caching, so
we’ll talk about that. Specifically, we’re going to use the Flask-Cache [http://pythonhosted.org/Flask-Cache/]
extension. This extension provides us with a decorator that we can use
on our index view to cache the response for some period of time.

Flask-Cache can be configured to work with a bunch of different caching
backends. A popular choice is Redis [http://redis.io/], which is easy to set-up and use.
Assuming Flask-Cache is already configured, this code block shows what our
decorated view would look like.

app.py

from flask_cache import Cache
from flask import Flask

app = Flask()

We'd normally include configuration settings in this call
cache = Cache(app)

@app.route('/')
@cache.cached(timeout=60)
def index():
 [...] # Make a few database calls to get the information we need
 return render_template(
 'index.html',
 latest_posts=latest_posts,
 recent_users=recent_users,
 recent_photos=recent_photos
)

Now the function will only be run once every 60 seconds, when the cache
expires. The response will be saved in our cache and pulled from there
for any intervening requests.

Note

Flask-Cache also lets us memoize functions — or cache the result of a function being called with certain arguments. You can even cache computationally expensive Jinja2 template snippets.

Custom decorators

For this section, let’s imagine we have an application that charges
users each month. If a user’s account is expired, we’ll redirect them to
the billing page and tell them to upgrade.

myapp/util.py

from functools import wraps
from datetime import datetime

from flask import flash, redirect, url_for

from flask_login import current_user

def check_expired(func):
 @wraps(func)
 def decorated_function(*args, **kwargs):
 if datetime.utcnow() > current_user.account_expires:
 flash("Your account has expired. Update your billing info.")
 return redirect(url_for('account_billing'))
 return func(*args, **kwargs)

 return decorated_function

	10

	When a function is decorated with @check_expired, check_expired()
is called and the decorated function is passed as a parameter.

	11

	@wraps is a decorator that does some bookkeeping so that
decorated_function() appears as func() for the purposes of
documentation and debugging. This makes the behavior of the
functions a little more natural.

	12

	decorated_function will get all of the args and kwargs that were
passed to the original view function func(). This is where we
check if the user’s account is expired. If it is, we’ll flash a
message and redirect them to the billing page.

	16

	Now that we’ve done what we wanted to do, we run the decorated
view function func() with its original arguments.

When we stack decorators, the topmost decorator will run first, then
call the next function in line: either the view function or the next
decorator. The decorator syntax is just a little syntactic sugar.

This code:
@foo
@bar
def one():
 pass

r1 = one()

is the same as this code:
def two():
 pass

two = foo(bar(two))
r2 = two()

r1 == r2 # True

This code block shows an example using our custom decorator and the
@login_required decorator from the Flask-Login extension. We can
use multiple decorators by stacking them.

myapp/views.py

from flask import render_template

from flask_login import login_required

from . import app
from .util import check_expired

@app.route('/use_app')
@login_required
@check_expired
def use_app():
 """Use our amazing app."""
 # [...]
 return render_template('use_app.html')

@app.route('/account/billing')
@login_required
def account_billing():
 """Update your billing info."""
 # [...]
 return render_template('account/billing.html')

Now when a user tries to access /use_app, check_expired() will
make sure that their account hasn’t expired before running the view
function.

Note

Read more about what the wraps() function does in the Python docs [http://docs.python.org/2/library/functools.html#functools.wraps].

URL Converters

Built-in converters

When you define a route in Flask, you can specify parts of it that will
be converted into Python variables and passed to the view function.

@app.route('/user/<username>')
def profile(username):
 pass

Whatever is in the part of the URL labeled <username> will get
passed to the view as the username argument. You can also specify a
converter to filter the variable before it’s passed to the view.

@app.route('/user/id/<int:user_id>')
def profile(user_id):
 pass

In this code block, the URL http://myapp.com/user/id/Q29kZUxlc3NvbiEh will
return a 404 status code – not found. This is because the part of the
URL that is supposed to be an integer is actually a string.

We could have a second view that looks for a string as well. That would
be called for /user/id/Q29kZUxlc3NvbiEh/ while the first would be
called for /user/id/124.

This table shows Flask’s built-in URL converters.

	string

	Accepts any text without a slash (the default).

	int

	Accepts integers.

	float

	Like int but for floating point values.

	path

	Like string but accepts slashes.

Custom converters

We can also make custom converters to suit our needs. On Reddit — a
popular link sharing site — users create and moderate communities for
theme-based discussion and link sharing. Some examples are /r/python and
/r/flask, denoted by the path in the URL: reddit.com/r/python and
reddit.com/r/flask respectively. An interesting feature of Reddit is
that you can view the posts from multiple subreddits as one by
seperating the names with a plus-sign in the URL, e.g.
reddit.com/r/python+flask.

We can use a custom converter to implement this feature in our own Flask
apps. We’ll take an arbitrary number of elements separated by
plus-signs, convert them to a list with a ListConverter class and
pass the list of elements to the view function.

myapp/util.py

from werkzeug.routing import BaseConverter

class ListConverter(BaseConverter):

 def to_python(self, value):
 return value.split('+')

 def to_url(self, values):
 return '+'.join(BaseConverter.to_url(value)
 for value in values)

We need to define two methods: to_python() and to_url(). As the
names suggest, to_python() is used to convert the path in the URL to
a Python object that will be passed to the view and to_url() is used
by url_for() to convert arguments to their appropriate forms in the
URL.

To use our ListConverter, we first have to tell Flask that it
exists.

/myapp/__init__.py

from flask import Flask

app = Flask(__name__)

from .util import ListConverter

app.url_map.converters['list'] = ListConverter

Warning

This is another chance to run into some circular import problems if your util module has a from . import app line. That’s why I waited until app had been initialized to import ListConverter.

Now we can use our converter just like one of the built-ins. We specified the key in the dictionary as “list” so that’s how we use it in @app.route().

myapp/views.py

from . import app

@app.route('/r/<list:subreddits>')
def subreddit_home(subreddits):
 """Show all of the posts for the given subreddits."""
 posts = []
 for subreddit in subreddits:
 posts.extend(subreddit.posts)

 return render_template('/r/index.html', posts=posts)

This should work just like Reddit’s multi-reddit system. This same
method can be used to make any URL converter we can dream of.

Summary

	The @login_required decorator from Flask-Login helps you limit
views to authenticated users.

	The Flask-Cache extension gives you a bunch of decorators to
implement various methods of caching.

	We can develop custom view decorators to help us organize our code
and stick to DRY (Don’t Repeat Yourself) coding principles.

	Custom URL converters can be a great way to implement creative
features involving URL’s.

Blueprints

[image: Blueprints]

What is a blueprint?

A blueprint defines a collection of views, templates, static files and
other elements that can be applied to an application. For example, let’s
imagine that we have a blueprint for an admin panel. This blueprint
would define the views for routes like /admin/login and
/admin/dashboard. It may also include the templates and static files
that will be served on those routes. We can then use this blueprint to
add an admin panel to our app, be it a social network for astronauts or
a CRM for rocket salesmen.

Why would you use blueprints?

The killer use-case for blueprints is to organize our application into
distinct components. For a Twitter-like microblog, we might have a
blueprint for the website pages, e.g. index.html and about.html.
Then we could have another for the logged-in dashboard where we show all
of the latest posts and yet another for our administrator’s panel. Each
distinct area of the site can be separated into distinct areas of the
code as well. This lets us structure our app as several smaller “apps”
that each do one thing.

Note

Read more about the benefits of using blueprints in “Why Blueprints” [http://flask.pocoo.org/docs/blueprints/#why-blueprints] from the Flask docs.

Where do you put them?

Like everything with Flask, there are many ways that we can organize our
app using blueprints. With blueprints, we can think of the choice as
functional versus divisional (terms I’m borrowing from the business
world).

Functional structure

With a functional structure, you organize the pieces of your app by what
they do. Templates are grouped together in one directory, static files
in another and views in a third.

yourapp/
 __init__.py
 static/
 templates/
 home/
 control_panel/
 admin/
 views/
 __init__.py
 home.py
 control_panel.py
 admin.py
 models.py

With the exception of yourapp/views/__init__.py, each of the .py
files in the yourapp/views/ directory from this listing is a blueprint. In
yourapp/__init__.py we would import those blueprints and
register them on our Flask() object. We’ll look a little more at
how this is implemented later in this chapter.

Note

At the time of writing this, the Flask website at http://flask.pocoo.org uses this structure. Take a look for yourself on GitHub [https://github.com/mitsuhiko/flask-website/tree/master/flask_website].

Divisional

With the divisional structure, you organize the pieces of the
application based on which part of the app they contribute to. All of
the templates, views and static files for the admin panel go in one
directory, and those for the user control panel go in another.

yourapp/
 __init__.py
 admin/
 __init__.py
 views.py
 static/
 templates/
 home/
 __init__.py
 views.py
 static/
 templates/
 control_panel/
 __init__.py
 views.py
 static/
 templates/
 models.py

With a divisional structure like the app in this listing, each directory
under yourapp/ is a separate blueprint. All of the blueprints are
applied to the Flask() app in the top-level __init__.py

Which one is best?

The organizational structure you choose is largely a personal decision.
The only difference is the way the hierarchy is represented – i.e. you
can architect Flask apps with either methodology – so you should choose
the one that makes sense to you.

If your app has largely independent pieces that only share things like
models and configuration, divisional might be the way to go. An example
might be a SaaS app that lets user’s build websites. You could have
blueprints in “divisions” for the home page, the control panel, the
user’s website, and the admin panel. These components may very well have
completely different static files and layouts. If you’re considering
spinning off your blueprints as extensions or using them for other
projects, a divisional structure will be easier to work with.

On the other hand, if the components of your app flow together a little
more, it might be better represented with a functional structure. An
example of this would be Facebook. If Facebook used Flask, it might have
blueprints for the static pages (i.e. signed-out home, register, about,
etc.), the dashboard (i.e. the news feed), profiles (/robert/about and
/robert/photos), settings (/settings/security and
/settings/privacy) and many more. These components all share a general
layout and styles, but each has its own layout as well. The following listing shows a
heavily abridged version of what Facebook might look like it if were
built with Flask.

facebook/
 __init__.py
 templates/
 layout.html
 home/
 layout.html
 index.html
 about.html
 signup.html
 login.html
 dashboard/
 layout.html
 news_feed.html
 welcome.html
 find_friends.html
 profile/
 layout.html
 timeline.html
 about.html
 photos.html
 friends.html
 edit.html
 settings/
 layout.html
 privacy.html
 security.html
 general.html
 views/
 __init__.py
 home.py
 dashboard.py
 profile.py
 settings.py
 static/
 style.css
 logo.png
 models.py

The blueprints in facebook/views/ are little more than collections of
views rather than wholly independent components. The same static files
will be used for the views in most of the blueprints. Most of the
templates will extend a master template. A functional structure is a
good way to organize this project.

How do you use them?

Basic usage

Let’s take a look at the code for one of the blueprints from that
Facebook example.

facebook/views/profile.py

from flask import Blueprint, render_template

profile = Blueprint('profile', __name__)

@profile.route('/<user_url_slug>')
def timeline(user_url_slug):
 # Do some stuff
 return render_template('profile/timeline.html')

@profile.route('/<user_url_slug>/photos')
def photos(user_url_slug):
 # Do some stuff
 return render_template('profile/photos.html')

@profile.route('/<user_url_slug>/about')
def about(user_url_slug):
 # Do some stuff
 return render_template('profile/about.html')

To create a blueprint object, we import the Blueprint() class and
initialize it with the arguments name and import_name. Usually
import_name will just be __name__, which is a special Python
variable containing the name of the current module.

We’re using a functional structure for this Facebook example. If we were
using a divisional structure, we’d want to tell Flask that the blueprint
has its own template and static directories. This code block shows what that
would look like.

profile = Blueprint('profile', __name__,
 template_folder='templates',
 static_folder='static')

We have now defined our blueprint. It’s time to register it on our Flask
app.

facebook/__init__.py

from flask import Flask
from .views.profile import profile

app = Flask(__name__)
app.register_blueprint(profile)

Now the routes defined in facebook/views/profile.py (e.g.
/<user_url_slug>) are registered on the application and act just
as if you’d defined them with @app.route().

Using a dynamic URL prefix

Continuing with the Facebook example, notice how all of the profile
routes start with the <user_url_slug> portion and pass that value to
the view. We want users to be able to access a profile by going to a URL
like https://facebo-ok.com/john.doe. We can stop repeating ourselves
by defining a dynamic prefix for all of the blueprint’s routes.

Blueprints let us define both static and dynamic prefixes. We can tell
Flask that all of the routes in a blueprint should be prefixed with
/profile for example; that would be a static prefix. In the case of
the Facebook example, the prefix is going to change based on which
profile the user is viewing. Whatever text they choose is the URL slug
of the profile which we should display; this is a dynamic prefix.

We have a choice to make when defining our prefix. We can define the
prefix in one of two places: when we instantiate the Blueprint()
class or when we register it with app.register_blueprint().

facebook/views/profile.py

from flask import Blueprint, render_template

profile = Blueprint('profile', __name__, url_prefix='/<user_url_slug>')

[...]

facebook/__init__.py

from flask import Flask
from .views.profile import profile

app = Flask(__name__)
app.register_blueprint(profile, url_prefix='/<user_url_slug>')

While there aren’t any technical limitations to either method, it’s nice
to have the prefixes available in the same file as the registrations.
This makes it easier to move things around from the top-level. For this
reason, I recommend setting url_prefix on registration.

We can use converters to make the prefix dynamic, just like in
route() calls. This includes any custom converters that we’ve
defined. When using converters, we can pre-process the value given
before handing it off to the view. In this case we’ll want to grab the
user object based on the URL slug passed into our profile blueprint.
We’ll do that by decorating a function with
url_value_preprocessor().

facebook/views/profile.py

from flask import Blueprint, render_template, g

from ..models import User

The prefix is defined on registration in facebook/__init__.py.
profile = Blueprint('profile', __name__)

@profile.url_value_preprocessor
def get_profile_owner(endpoint, values):
 query = User.query.filter_by(url_slug=values.pop('user_url_slug'))
 g.profile_owner = query.first_or_404()

@profile.route('/')
def timeline():
 return render_template('profile/timeline.html')

@profile.route('/photos')
def photos():
 return render_template('profile/photos.html')

@profile.route('/about')
def about():
 return render_template('profile/about.html')

We’re using the g object to store the profile owner and g is
available in the Jinja2 template context. This means that for a
barebones case all we have to do in the view is render the template. The
information we need will be available in the template.

{# facebook/templates/profile/photos.html #}

{% extends "profile/layout.html" %}

{% for photo in g.profile_owner.photos.all() %}

{% endfor %}

Note

	The Flask documentation has a great tutorial [http://flask.pocoo.org/docs/patterns/urlprocessors/#internationalized-blueprint-urls] on using prefixes for internationalizing your URLs.

Using a dynamic subdomain

Many SaaS (Software as a Service) applications these days provide users
with a subdomain from which to access their software. Harvest, for
example, is a time tracking application for consultants that gives you
access to your dashboard from yourname.harvestapp.com. Here I’ll show
you how to get Flask to work with automatically generated subdomains
like this.

For this section I’m going to use the example of an application that
lets users create their own websites. Imagine that our app has three
blueprints for distinct sections: the home page where users sign-up, the
user administration panel where the user builds their website and the
user’s website. Since these three parts are relatively unconnected,
we’ll organize them in a divisional structure.

sitemaker/
 __init__.py
 home/
 __init__.py
 views.py
 templates/
 home/
 static/
 home/
 dash/
 __init__.py
 views.py
 templates/
 dash/
 static/
 dash/
 site/
 __init__.py
 views.py
 templates/
 site/
 static/
 site/
 models.py

This table explains the different blueprints in this app.

	URL

	Route

	Description

	sitemaker.com

	sitemaker/home

	Just a vanilla blueprint. Views, templates and static
files for index.html, about.html and pricing.html.

	bigdaddy.sitemaker.com

	sitemaker/site

	This blueprint uses a dynamic subdomain and includes the
elements of the user’s website. We’ll go over some of the
code used to implement this blueprint below.

	bigdaddy.sitemaker.com/admin

	sitemaker/dash

	This blueprint could use both a dynamic subdomain and a
URL prefix by combining the techniques in this section
with those from the previous section.

We can define our dynamic subdomain the same way we defined our URL
prefix. Both options (in the blueprint directory or in the top-level
__init__.py) are available, but once again we’ll keep the
definitions in sitemaker/__init.py__.

sitemaker/__init__.py

from flask import Flask
from .site import site

app = Flask(__name__)
app.register_blueprint(site, subdomain='<site_subdomain>')

Since we’re using a divisional structure, we’ll define the blueprint in
sitemaker/site/__init__.py.

sitemaker/site/__init__py

from flask import Blueprint

from ..models import Site

Note that the capitalized Site and the lowercase site
are two completely separate variables. Site is a model
and site is a blueprint.

site = Blueprint('site', __name__)

@site.url_value_preprocessor
def get_site(endpoint, values):
 query = Site.query.filter_by(subdomain=values.pop('site_subdomain'))
 g.site = query.first_or_404()

Import the views after site has been defined. The views
module will need to import 'site' so we need to make
sure that we import views after site has been defined.
from . import views

Now we have the site information from the database that we’ll use to
display the user’s site to the visitor who requests their subdomain.

To get Flask to work with subdomains, we’ll need to specify the
SERVER_NAME configuration variable.

config.py

SERVER_NAME = 'sitemaker.com'

Note

A few minutes ago, as I was drafting this section, somebody in IRC said that their subdomains were working fine in development, but not in production. I asked if they had the SERVER_NAME configured, and it turned out that they had it in development but not production. Setting it in production solved their problem.

See the conversation between myself (imrobert in the log) and aplavin: http://dev.pocoo.org/irclogs/%23pocoo.2013-07-30.log

It was enough of a coincidence that I felt it warranted inclusion in the section.

Note

You can set both a subdomain and url_prefix. Think about how we would
configure the blueprint in sitemaker/dash with the URL structure from
the table above.

Refactoring small apps to use blueprints

I’d like to go over a brief example of the steps we can take to convert
an app to use blueprints. We’ll start off with a typical Flask app and
restructure it.

config.txt
requirements.txt
run.py
U2FtIEJsYWNr/
 __init__.py
 views.py
 models.py
 templates/
 static/
tests/

The views.py file has grown to 10,000 lines of code! We’ve been
putting off refactoring it, but it’s finally time. The file contains the
views for every section of our site. The sections are the home page, the
user dashboard, the admin dashboard, the API and the company blog.

Step 1: Divisional or functional?

This application is made up of very distinct sections. Templates and
static files probably aren’t going to be shared between the user
dashboard and the company blog, for example. We’ll go with a divisional
structure.

Step 2: Move some files around

Warning

Before you make any changes to your app, commit everything to version control. You don’t want to accidentally delete something for good.

Next we’ll go ahead and create the directory tree for our new app. We
can start by creating a folder for each blueprint within the package
directory. Then we’ll copy views.py, static/ and templates/ in
their entirety to each blueprint directory. We can then remove them from
the top-level package directory.

config.txt
requirements.txt
run.py
U2FtIEJsYWNr/
 __init__.py
 home/
 views.py
 static/
 templates/
 dash/
 views.py
 static/
 templates/
 admin/
 views.py
 static/
 templates/
 api/
 views.py
 static/
 templates/
 blog/
 views.py
 static/
 templates/
 models.py
tests/

Step 3: Cut the crap

Now we can go into each blueprint and remove the views, static files and
templates that don’t apply to that blueprint. How you go about this step
largely depends on how your app was organized to begin with.

The end result should be that each blueprint has a views.py file with
all of the views for that blueprint. No two blueprints should define a
view for the same route. Each templates/ directory should only include
the templates for the views in that blueprint. Each static/ directory
should only include the static files that should be exposed by that
blueprint.

Note

Make it a point to eliminate all unnecessary imports. It’s easy to forget about them, but at best they clutter your code and at worst they slow down your application.

Step 4: Blueprint…ifi…cation or something

This is the part where we turn our directories into blueprints. The key
is in the __init__.py files. For starters, let’s take a look at
the definition of the API blueprint.

U2FtIEJsYWNr/api/__init__.py

from flask import Blueprint

api = Blueprint(
 'site',
 __name__,
 template_folder='templates',
 static_folder='static'
)

from . import views

Next we can register this blueprint in the U2FtIEJsYWNr package’s
top-level __init__.py file.

U2FtIEJsYWNr/__init__.py

from flask import Flask
from .api import api

app = Flask(__name__)

Puts the API blueprint on api.U2FtIEJsYWNr.com.
app.register_blueprint(api, subdomain='api')

Make sure that the routes are registered on the blueprint now rather
than the app object.

U2FtIEJsYWNr/views.py

from . import app

@app.route('/search', subdomain='api')
def api_search():
 pass

U2FtIEJsYWNr/api/views.py

from . import api

@api.route('/search')
def search():
 pass

Step 5: Enjoy

Now our application is far more modular than it was with one massive
views.py file. The route definitions are simpler because we can group
them together into blueprints and configure things like subdomains and
URL prefixes once for each blueprint.

Summary

	A blueprint is a collection of views, templates, static files and
other extensions that can be applied to an application.

	Blueprints are a great way to organize your application.

	In a divisional structure, each blueprint is a collection of views,
templates and static files which constitute a particular section of
your application.

	In a functional structure, each blueprint is just a collection of
views. The templates are all kept together, as are the static files.

	To use a blueprint, you define it then register it on the application
by calling Flask.register_blueprint()..

	You can define a dynamic URL prefix that will be applied to all
routes in a blueprint.

	You can also define a dynamic subdomain for all routes in a
blueprint.

	Refactoring a growing application to use blueprints can be done in
five relatively small steps.

Templates

[image: Templates]
While Flask doesn’t force us to use any particular templating language,
it assumes that we’re going to use Jinja. Most of the developers in the
Flask community use Jinja, and I recommend that you do the same. There
are a few extensions that have been written to let us use other
templating languages, like Flask-Genshi [http://pythonhosted.org/Flask-Genshi/] and Flask-Mako [http://pythonhosted.org/Flask-Mako/].
Stick with the default unless you have a good reason to use something else. Not knowing the
Jinja syntax yet is not a good reason! You’ll save yourself a lot of time and headache.

Note

Almost all resources imply Jinja2 when they refer to “Jinja.” There was a Jinja1, but we won’t be dealing with it here. When you see Jinja, we’re talking about this: http://jinja.pocoo.org/

A quick primer on Jinja

The Jinja documentation does a great job of explaining the syntax and
features of the language. I won’t reiterate it all here, but I do want
to make sure that you see this important note:

There are two kinds of delimiters. {% ... %} and
{{ ... }}. The first one is used to execute statements such as
for-loops or assign values, the latter prints the result of the
expression to the template.

—Jinja Template Designer Documentation [http://jinja.pocoo.org/docs/templates/#synopsis]

How to organize templates

So where do templates fit into our app? If you’ve been following along
at home, you may have noticed that Flask is really flexible about where
we put things. Templates are no exception. You may also notice that
there’s usually a recommended place to put things. Two points for you.
For templates, that place is in the package directory.

myapp/
 __init__.py
 models.py
 views/
 templates/
 static/
run.py
requirements.txt

templates/
 layout.html
 index.html
 about.html
 profile/
 layout.html
 index.html
 photos.html
 admin/
 layout.html
 index.html
 analytics.html

The structure of the templates directory parallels the structure of
our routes. The template for the route myapp.com/admin/analytics is
templates/admin/analytics.html. There are also some extra templates
in there that won’t be rendered directly. The layout.html files are
meant to be inherited by the other templates.

Inheritance

Much like Batman’s backstory, a well organized templates directory
relies heavily on inheritance. The parent template usually defines a
generalized structure that all of the child templates will work
within. In our example, layout.html is a parent template and the other
.html files are child templates.

You’ll generally have one top-level layout.html that defines the
general layout for your application and one for each section of your
site. If you take a look at the directory above, you’ll see that there
is a top-level myapp/templates/layout.html as well as
myapp/templates/profile/layout.html and
myapp/templates/admin/layout.html. The last two files inherit and
modify the first.

Inheritance is implemented with the {% extends %} and
{% block %} tags. In the parent template, we can define blocks which
will be populated by child templates.

{# _myapp/templates/layout.html_ #}

<!DOCTYPE html>
<html lang="en">
 <head>
 <title>{% block title %}{% endblock %}</title>
 </head>
 <body>
 {% block body %}
 <h1>This heading is defined in the parent.</h1>
 {% endblock %}
 </body>
</html>

In the child template, we can extend the parent template and define the
contents of those blocks.

{# _myapp/templates/index.html_ #}

{% extends "layout.html" %}
{% block title %}Hello world!{% endblock %}
{% block body %}
 {{ super() }}
 <h2>This heading is defined in the child.</h2>
{% endblock %}

The super() function lets us include whatever was inside the block
in the parent template.

Note

For more information on inheritance, refer to the Jinja Template Inheritence documentation [http://jinja.pocoo.org/docs/templates/#template-inheritance].

Creating macros

We can implement DRY (Don’t Repeat Yourself) principles in our templates
by abstracting snippets of code that appear over and over into
macros. If we’re working on some HTML for our app’s navigation, we
might want to give a different class to the “active” link (i.e. the link
to the current page). Without macros we’d end up with a block of
if ... else statements that check each link to find the active one.

Macros provide a way to modularize that code; they work like functions.
Let’s look at how we’d mark the active link using a macro.

{# myapp/templates/layout.html #}

{% from "macros.html" import nav_link with context %}
<!DOCTYPE html>
<html lang="en">
 <head>
 {% block head %}
 <title>My application</title>
 {% endblock %}
 </head>
 <body>
 <ul class="nav-list">
 {{ nav_link('home', 'Home') }}
 {{ nav_link('about', 'About') }}
 {{ nav_link('contact', 'Get in touch') }}

 {% block body %}
 {% endblock %}
 </body>
</html>

What we are doing in this template is calling an undefined macro —
nav_link — and passing it two parameters: the target endpoint
(i.e. the function name for the target view) and the text we want to
show.

Note

You may notice that we specified with context in the import
statement. The Jinja context consists of the arguments passed to the
render_template() function as well as the Jinja environment context
from our Python code. These variables are made available in the template
that is being rendered.

Some variables are explicitly passed by us, e.g.
render_template("index.html", color="red"), but there are several
variables and functions that Flask automatically includes in the
context, e.g. request, g and session. When we say
{% from ... import ... with context %} we are telling Jinja to make
all of these variables available to the macro as well.

Note

	All of the global variables that are passed to the Jinja context by
Flask: http://flask.pocoo.org/docs/templating/#standard-context}

	We can define variables and functions that we want to be merged into
the Jinja context with context processors:
http://flask.pocoo.org/docs/templating/#context-processors

Now it’s time to define the nav_link macro that we used in our template.

{# myapp/templates/macros.html #}

{% macro nav_link(endpoint, text) %}
{% if request.endpoint.endswith(endpoint) %}
 <li class="active">{{text}}
{% else %}
 {{text}}
{% endif %}
{% endmacro %}

Now we’ve defined the macro in myapp/templates/macros.html. In this macro
we’re using Flask’s request object — which is available in
the Jinja context by default — to check whether or not the current
request was routed to the endpoint passed to nav_link. If it was,
than we’re currently on that page, and we can mark it as active.

Note

The from x import y statement takes a relative path for x. If our
template was in myapp/templates/user/blog.html we would use
from "../macros.html" import nav_link with context.

Custom filters

Jinja filters are functions that can be applied to the result of an
expression in the {{ ... }} delimiters. It is applied before that
result is printed to the template.

<h2>{{ article.title|title }}</h2>

In this code, the title filter will take article.title and return
a title-cased version, which will then be printed to the template. This
looks and works a lot like the UNIX practice of “piping” the output of
one program to another.

Note

There are loads of built-in filters like title. See the full list [http://jinja.pocoo.org/docs/templates/#builtin-filters] in the Jinja docs.

We can define our own filters for use in our Jinja templates. As an
example, we’ll implement a simple caps filter to capitalize all of
the letters in a string.

Note

Jinja already has an upper filter that does this, and a capitalize filter that capitalizes the first character and lowercases the rest. These also handle unicode conversion, but we’ll keep our example simple to focus on the concept at hand.

We’re going to define our filter in a module located at
myapp/util/filters.py. This gives us a util package in which to
put other miscellaneous modules.

myapp/util/filters.py

from .. import app

@app.template_filter()
def caps(text):
 """Convert a string to all caps."""
 return text.uppercase()

In this code we are registering our function as a Jinja filter by using
the @app.template_filter() decorator. The default filter name is
just the name of the function, but you can pass an argument to the
decorator to change that.

@app.template_filter('make_caps')
def caps(text):
 """Convert a string to all caps."""
 return text.uppercase()

Now we can call make_caps in the template rather than caps:
{{ "hello world!"|make_caps }}.

To make our filter available in the templates, we just need to import it
in our top-level __init.py__.

myapp/__init__.py

Make sure app has been initialized first to prevent circular imports.
from .util import filters

Summary

	Use Jinja for templating.

	Jinja has two kinds of delimeters: {% ... %} and {{ ... }}.
The first one is used to execute statements such as for-loops or
assign values, the latter prints the result of the contained
expression to the template.

	Templates should go in myapp/templates/ — i.e. a directory inside
of the application package.

	I recommend that the structure of the templates/ directory mirror
the URL structure of the app.

	You should have a top-level layout.html in myapp/templates as
well as one for each section of the site. The latter extend the
former.

	Macros are like functions made-up of template code.

	Filters are functions made-up of Python code and used in templates.

Static files

[image: Static files]
As their name suggests, static files are the files that don’t change. In
your average app, this includes CSS files, JavaScript files and images.
They can also include audio files and other things of that nature.

Organizing your static files

We’ll create a directory for our static files called static inside our
application package.

myapp/
 __init__.py
 static/
 templates/
 views/
 models.py
run.py

How you organize the files in static/ is a matter of personal
preference. Personally, I get a little irked by having third-party
libraries (e.g. jQuery, Bootstrap, etc.) mixed in with my own JavaScript
and CSS files. To avoid this, I recommend separating third-party
libraries out into a lib/ folder within the appropriate directory.
Some projects use vendor/ instead of lib/.

static/
 css/
 lib/
 bootstrap.css
 style.css
 home.css
 admin.css
 js/
 lib/
 jquery.js
 home.js
 admin.js
 img/
 logo.svg
 favicon.ico

Serving a favicon

The files in our static directory will be served from
example.com/static/. By default, web browsers and other software
expects our favicon to be at example.com/favicon.ico. To fix this
discrepency, we can add the following in the <head> section of our
site template.

<link rel="shortcut icon"
 href="{{ url_for('static', filename='img/favicon.ico') }}">

Manage static assets with Flask-Assets

Flask-Assets is an extension for managing your static files. There are
two really useful tools that Flask-Assets provides. First, it lets you
define bundles of assets in your Python code that can be inserted
together in your template. Second, it lets you pre-process those
files. This means that you can combine and minify your CSS and
JavaScript files so that the user only has to load two minified files
(CSS and JavaScript) without forcing you to develop a complex asset
pipeline. You can even compile your files from Sass, LESS, CoffeeScript
and a bunch of other sources.

static/
 css/
 lib/
 reset.css
 common.css
 home.css
 admin.css
 js/
 lib/
 jquery-1.10.2.js
 Chart.js
 home.js
 admin.js
 img/
 logo.svg
 favicon.ico

Defining bundles

Our app has two sections: the public site and the admin panel, referred
to as “home” and “admin” respectively in our app. We’ll define four
bundles to cover this: a JavaScript and CSS bundle for each section.
We’ll put these in an assets module inside our util package.

myapp/util/assets.py

from flask_assets import Bundle, Environment
from .. import app

bundles = {

 'home_js': Bundle(
 'js/lib/jquery-1.10.2.js',
 'js/home.js',
 output='gen/home.js'),

 'home_css': Bundle(
 'css/lib/reset.css',
 'css/common.css',
 'css/home.css',
 output='gen/home.css'),

 'admin_js': Bundle(
 'js/lib/jquery-1.10.2.js',
 'js/lib/Chart.js',
 'js/admin.js',
 output='gen/admin.js'),

 'admin_css': Bundle(
 'css/lib/reset.css',
 'css/common.css',
 'css/admin.css',
 output='gen/admin.css')
}

assets = Environment(app)

assets.register(bundles)

Flask-Assets combines your files in the order in which they are listed
here. If admin.js requires jquery-1.10.2.js, make sure jquery is
listed first.

We’re defining the bundles in a dictionary to make it easy to register
them. webassets, the package behind Flask-Assets lets us register
bundles in a number of ways, including passing a dictionary like the one
we made in this snippet. 1

Since we’re registering our bundles in util.assets, all we have to
do is import that module in __init__.py after our app has been
initialized.

myapp/__init__.py

[...] Initialize the app

from .util import assets

Using our bundles

To use our admin bundles, we’ll insert them into the parent template for
the admin section: admin/layout.html.

templates/
 home/
 layout.html
 index.html
 about.html
 admin/
 layout.html
 dash.html
 stats.html

{# myapp/templates/admin/layout.html #}

<!DOCTYPE html>
<html lang="en">
 <head>
 {% assets "admin_js" %}
 <script type="text/javascript" src="{{ ASSET_URL }}"></script>
 {% endassets %}
 {% assets "admin_css" %}
 <link rel="stylesheet" href="{{ ASSET_URL }}" />
 {% endassets %}
 </head>
 <body>
 {% block body %}
 {% endblock %}
 </body>
</html>

We can do the same thing for the home bundles in
templates/home/layout.html.

Using filters

We can use filters to pre-process our static files. This is especially
handy for minifying our JavaScript and CSS bundles.

myapp/util/assets.py

[...]

bundles = {

 'home_js': Bundle(
 'lib/jquery-1.10.2.js',
 'js/home.js',
 output='gen/home.js',
 filters='jsmin'),

 'home_css': Bundle(
 'lib/reset.css',
 'css/common.css',
 'css/home.css',
 output='gen/home.css',
 filters='cssmin'),

 'admin_js': Bundle(
 'lib/jquery-1.10.2.js',
 'lib/Chart.js',
 'js/admin.js',
 output='gen/admin.js',
 filters='jsmin'),

 'admin_css': Bundle(
 'lib/reset.css',
 'css/common.css',
 'css/admin.css',
 output='gen/admin.css',
 filters='cssmin')
}

[...]

Note

To use the jsmin and cssmin filters, you’ll need to install the
jsmin and cssmin packages (e.g. with
pip install jsmin cssmin). Make sure to add them to
requirements.txt too.

Flask-Assets will merge and compress our files the first time the
template is rendered, and it’ll automatically update the compressed file
when one of the source files changes.

Note

If you set ASSETS_DEBUG = True in your config, Flask-Assets will output each source file individually instead of merging them.

Note

Take a look at some of the other filters [http://elsdoerfer.name/docs/webassets/builtin_filters.html#js-css-compilers] that we can use with Flask-Assets.

Summary

	Static files go in the static/ directory.

	Separate third-party libraries from your own static files.

	Specify the location of your favicon in your templates.

	Use Flask-Assets to insert static files in your templates.

	Flask-Assets can compile, combine and compress your static files.

	1

	We can see how bundle registration works in the source [https://github.com/miracle2k/webassets/blob/0.8/src/webassets/env.py#L380].

Storing data

[image: Storing data]
Most Flask applications are going to deal with storing data at some
point. There are many different ways to store data. Finding the best one
depends entirely on the data you are going to store. If you are storing
relational data (e.g. a user has posts, posts have a user, etc.) a
relational database is probably going to be the way to go (big suprise).
Other types of data might be more suited to NoSQL data stores, such as
MongoDB.

I’m not going to tell you how to choose a database engine for your
application. There are people who will tell you that NoSQL is the only
way to go and those who will say the same about relational databases.
All I will say on that subject is that if you are unsure, a relational
database (MySQL, PostgreSQL, etc.) will almost certainly work for
whatever you’re doing.

Plus, when you use a relational database you get to use SQLAlchemy and
SQLAlchemy is fun.

SQLAlchemy

SQLAlchemy is an ORM (Object Relational Mapper). It’s basically an
abstraction layer that sits on top of the raw SQL queries being executed
on our database. It provides a consistent API to a long list of database
engines. The most popular include MySQL, PostgreSQL and SQLite. This
makes it easy to move data between our models and our database and it
makes it really easy to do other things like switch database engines and
migrate our schemas.

There is a great Flask extension that makes using SQLAlchemy in Flask
even easier. It’s called Flask-SQLAlchemy. Flask-SQLAlchemy configures a
lot of sane defaults for SQLAlchemy. It also handles some session
management so we don’t have to deal with janitorial stuff in our
application code.

Let’s dive into some code. We’re going to define some models then
configure some SQLAlchemy. The models are going to go in
myapp/models.py, but first we are going to define our database in
myapp/__init__.py

ourapp/__init__.py

from flask import Flask
from flask_sqlalchemy import SQLAlchemy

app = Flask(__name__, instance_relative_config=True)

app.config.from_object('config')
app.config.from_pyfile('config.py')

db = SQLAlchemy(app)

First we initialize and configure our Flask app and then we use it to
initialize our SQLAlchemy database handler. We’re going to use an
instance folder for our database configuration so we should use the
instance_relative_config option when initializing the app and then
call app.config.from_pyfile to load it. Then we can define our
models.

ourapp/models.py

from . import db

class Engine(db.Model):

 # Columns

 id = db.Column(db.Integer, primary_key=True, autoincrement=True)

 title = db.Column(db.String(128))

 thrust = db.Column(db.Integer, default=0)

Column, Integer, String, Model and other SQLAlchemy
classes are all available via the db object constructed from
Flask-SQLAlchemy. We have defined a model to store the
current state of our spacecraft’s engines. Each engine has an id, a
title and a thrust level.

We still need to add some database information to our configuration.
We’re using an instance folder to keep confidential configuration
variables out of version control, so we are going to put it in
instance/config.py.

instance/config.py

SQLALCHEMY_DATABASE_URI = "postgresql://user:password@localhost/spaceshipDB"

Note

Your database URI will be different depending on the engine you use and where it’s hosted. See the SQLAlchemy documentation for this syntax [http://docs.sqlalchemy.org/en/latest/core/engines.html?highlight=database#database-urls].

Initializing the database

Now that the database is configured and we have defined a model, we can
initialize the database. This step basically involves creating the
database schema from the model definitions.

Normally that process might be a pain in the … neck. Lucky for us,
SQLAlchemy has a really cool command that will do all of this for us.

Let’s open up a Python terminal in our repository root.

$ pwd
/Users/me/Code/myapp
$ workon myapp
(myapp)$ python
Python 2.7.5 (default, Aug 25 2013, 00:04:04)
[GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.0.68)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> from myapp import db
>>> db.create_all()
>>>

Now, thanks to SQLAlchemy, our tables have been created in the database
specified in our configuration.

Alembic migrations

The schema of a database is not set in stone. For example, we may want
to add a last_fired column to the engine table. If we don’t have any
data, we can just update the model and run db.create_all() again.
However, if we have six months of engine data logged in that table, we
probably don’t want to start over from scratch. That’s where database
migrations come in.

Alembic is a database migration tool created specifically for use with
SQLAlchemy. It lets us keep a versioned history of our database schema
so that we can later upgrade to a new schema and even downgrade back to
an older one.

Alembic has an extensive tutorial to get you started, so I’ll just give
you a quick overview and point out a couple of things to watch out for.

We’ll create our alembic “migration environment” via the
alembic init command. Once we run this in our repository root
we’ll have a new directory with the very creative name alembic. Our
repository will end up looking something like the example in this listing,
adapted from the Alembic tutorial.

ourapp/
 alembic.ini
 alembic/
 env.py
 README
 script.py.mako
 versions/
 3512b954651e_add_account.py
 2b1ae634e5cd_add_order_id.py
 3adcc9a56557_rename_username_field.py
 myapp/
 __init__.py
 views.py
 models.py
 templates/
 run.py
 config.py
 requirements.txt

The alembic/ directory has the scripts that migrate our data between
versions. There is also an alembic.ini file that contains
configuration information.

Note

Add alembic.ini to .gitignore! You are going to have your database
credentials in this file, so you do not want it to end up in version
control.

You do want to keep alembic/ in version control though. It does not
contain sensitive information (that can’t already be derived from your
source code) and keeping it in version control will mean having multiple
copies should something happen to the files on your computer.

When it comes time to make a schema change, there are a couple of steps.
First we run alembic revision to generate a migration script. Then
we’ll open up the newly generated Python file in
myapp/alembic/versions/ and fill in the upgrade and downgrade
functions using the tools provided by Alembic’s op object.

Once we have our migration script ready, we can run
alembic upgrade head to migrade our data to the latest version.

Note

For the details on configuring Alembic, creating your migration scripts and running your migrations, see the Alembic tutorial [http://alembic.readthedocs.org/en/latest/tutorial.html].

Warning

Don’t forget to put a plan in place to back up your data. The details of that plan are outside the scope of this book, but you should always have your database backed up in a secure and robust way.

Note

The NoSQL scene is less established with Flask, but as long as the database engine of your choice has a Python library, you should be able to use it. There are even several extensions in the Flask extension registry [http://flask.pocoo.org/extensions/] to help integrate NoSQL engines with Flask.

Summary

	Use SQLAlchemy to work with relational databases.

	Use Flask-SQLAlchemy to work with SQLAlchemy.

	Alembic helps you migrate your data between schema changes.

	You can use NoSQL databases with Flask, but the methods and tools
vary between engines.

	Back up your data!

Handling forms

[image: Handling forms]
The form is the basic element that lets users interact with our web
application. Flask alone doesn’t do anything to help us handle forms,
but the Flask-WTF extension lets us use the popular WTForms package in
our Flask applications. This package makes defining forms and handling
submissions easy.

Flask-WTF

The first thing we want to do with Flask-WTF (after installing it) is to
define a form in a myapp.forms package.

ourapp/forms.py

from flask_wtf import Form
from wtforms import StringField, PasswordField
from wtforms.validators import DataRequired, Email

class EmailPasswordForm(Form):
 email = StringField('Email', validators=[DataRequired(), Email()])
 password = PasswordField('Password', validators=[DataRequired()])

Note

Until version 0.9, Flask-WTF provided its own wrappers around the WTForms fields and validators. You may see a lot of code out in the wild that imports TextField, PasswordField, etc. from flask_wtforms instead of wtforms.

As of 0.9, we should be importing that stuff straight from wtforms.

The form we defined is going to be a user sign-in form. We could have
called it SignInForm(), but by keeping things a little more
abstract, we can re-use this same form class for other things, like a
sign-up form. If we were to define purpose-specific form classes we’d
end up with a lot of identical forms for no good reason. It’s much
cleaner to name forms based on the fields they contain, as that is what
makes them unique. Of course, sometimes we’ll have long, one-off forms
that we might want to give a more context-specific name.

This sign-in form can do a few of things for us. It can secure our app
against CSRF vulnerabilites, validate user input and render the
appropriate markup for whatever fields we define for it.

CSRF Protection and validation

CSRF stands for cross site request forgery. CSRF attacks involve a third
party forging a request (like a form submission) to an app’s server. A
vulnerable server assumes that the data is coming from a form on its own
site and takes action accordingly.

As an example, let’s say that an email provider lets you delete your
account by submitting a form. The form sends a POST request to an
account_delete endpoint on their server and deletes the account
that was logged-in when the form was submitted. We can create a form on
our own site that sends a POST request to the same account_delete
endpoint. Now, if we can get someone to click ‘submit’ on our form (or
do it via JavaScript when they load the page) their logged-in account
with the email provider will be deleted. Unless of course the email
provider knows not to assume that form submissions are coming from their
own forms.

So how do we stop assuming that POST requests come from our own forms?
WTForms makes it possible by generating a unique token when rendering
each form. That token is meant to be passed back to the server, along
with the form data in the POST request and must be validated before the
form is accepted. The key is that the token is tied to a value stored in
the user’s session (cookies) and expires after a certain amount of time
(30 minutes by default). This way the only person who can submit a valid
form is the person who loaded the page (or at least someone at the same
computer), and they can only do it for 30 minutes after loading the
page.

Note

	Read more on how WTForms generates these tokens in the docs [http://wtforms.simplecodes.com/docs/1.0.1/ext.html#module-wtforms.ext.csrf.session].

	Learn about CSRF in the OWASP wiki [https://www.owasp.org/index.php/CSRF].

To start using Flask-WTF for CSRF protection, we’ll need to define a
view for our login page.

ourapp/views.py

from flask import render_template, redirect, url_for

from . import app
from .forms import EmailPasswordForm

@app.route('/login', methods=["GET", "POST"])
def login():
 form = EmailPasswordForm()
 if form.validate_on_submit():

 # Check the password and log the user in
 # [...]

 return redirect(url_for('index'))
 return render_template('login.html', form=form)

We import our form from our forms package and instantiate it in the
view. Then we run form.validate_on_submit(). This function returns
True if the form has been both submitted (i.e. if the HTTP method is
PUT or POST) and validated by the validators we defined in forms.py.

Note

	Documentation for Form.validate_on_submit [https://flask-wtf.readthedocs.org/en/latest/api.html#flask_wtf.Form.validate_on_submit]

	Source for Form.validate_on_submit [https://github.com/lepture/flask-wtf/blob/v0.9.5/flask_wtf/form.py#L151]

If the form has been submitted and validated, we can continue with the
login logic. If it hasn’t been submitted (i.e. it’s just a GET request),
we want to pass the form object to our template so it can be rendered.
Here’s what the template looks like when we’re using CSRF protection.

{# ourapp/templates/login.html #}

{% extends "layout.html" %}
<html>
 <head>
 <title>Login Page</title>
 </head>
 <body>
 <form action="{{ url_for('login') }}" method="post">
 <input type="text" name="email" />
 <input type="password" name="password" />
 {{ form.csrf_token }}
 </form>
 </body>
</html>

{{ form.csrf_token }} renders a hidden field containing one of those
fancy CSRF tokens and WTForms looks for that field when it validates the
form. We don’t have to worry about including any special “is the token
valid” logic. Hooray!

Protecting AJAX calls with CSRF tokens

Flask-WTF CSRF tokens aren’t limited to protecting form submissions. If
your app makes other requests that might be forged (especially AJAX
calls) you can add CSRF protection there too!

Note

The Flask-WTF documentation talks more about using these CSRF tokens in AJAX calls [https://flask-wtf.readthedocs.org/en/latest/csrf.html#ajax].

Custom validators

In addition to the built-in form validators provided by WTForms (e.g.
Required(), Email(), etc.), we can create our own validators.
We’ll demonstrate this by making a Unique() validator that will
check a database and make sure that the value provided by the user
doesn’t already exist. This could be used to make sure that a username
or email address isn’t already in use. Without WTForms, we’d probably be
doing these checks in the view, but now we can abstract that away to the
form itself.

We’ll start by defining a simple sign-up form.

ourapp/forms.py

from flask_wtf import Form
from wtforms import StringField, PasswordField
from wtforms.validators import DataRequired, Email

class EmailPasswordForm(Form):
 email = StringField('Email', validators=[DataRequired(), Email()])
 password = PasswordField('Password', validators=[DataRequired()])

Now we want to add our validator to make sure that the email they
provide isn’t already in the database. We’ll put the validator in a new
util module, util.validators.

ourapp/util/validators.py
from wtforms.validators import ValidationError

class Unique(object):
 def __init__(self, model, field, message=u'This element already exists.'):
 self.model = model
 self.field = field

 def __call__(self, form, field):
 check = self.model.query.filter(self.field == field.data).first()
 if check:
 raise ValidationError(self.message)

This validator assumes that we’re using SQLAlchemy to define our models.
WTForms expects validators to return some sort of callable (e.g. a
callable class).

In __init__.py we can specify which arguments should be passed to
the validator. In this case we want to pass the relevant model (e.g. the
User model in our case) and the field to check. When the validator
is called, it will raise a ValidationError if any instance of the
defined model matches the value submitted in the form. We’ve also made
it possible to add a message with a generic default that will be
included in the ValidationError.

Now we can modify EmailPasswordForm to use the Unique validator.

ourapp/forms.py

from flask_wtf import Form
from wtforms import StringField, PasswordField
from wtforms.validators import DataRequired

from .util.validators import Unique
from .models import User

class EmailPasswordForm(Form):
 email = StringField('Email', validators=[DataRequired(), Email(),
 Unique(
 User,
 User.email,
 message='There is already an account with that email.'])
 password = PasswordField('Password', validators=[DataRequired()])

Note

Our validator doesn’t have to be a callable class. It could also be a factory that returns a callable or just a callable directly. The WTForms documentation has some examples [http://wtforms.simplecodes.com/docs/0.6.2/validators.html#custom-validators].

Rendering forms

WTForms can also help us render the HTML for the forms. The Field
class implemented by WTForms renders an HTML representation of that
field, so we just have to call the form fields to render them in our
template. It’s just like rendering the csrf_token field. Listing
gives an example of a login template using WTForms to render our fields.

{# ourapp/templates/login.html #}

{% extends "layout.html" %}
<html>
 <head>
 <title>Login Page</title>
 </head>
 <body>
 <form action="" method="post">
 {{ form.email }}
 {{ form.password }}
 {{ form.csrf_token }}
 </form>
 </body>
</html>

We can customize how the fields are rendered by passing field properties
as arguments to the call.

<form action="" method="post">
 {{ form.email.label }}: {{ form.email(placeholder='yourname@email.com') }}

 {{ form.password.label }}: {{ form.password }}

 {{ form.csrf_token }}
</form>

Note

If we want to pass the “class” HTML attribute, we have to use class_='' since “class” is a reserved keyword in Python.

Note

The WTForms documentation has a list of available field properties [http://wtforms.simplecodes.com/docs/1.0.4/fields.html#wtforms.fields.Field.name].

Note

You may notice that we don’t need to use Jinja’s |safe filter. This is because WTForms renders HTML safe strings.

Read more in the documentation [https://flask-wtf.readthedocs.org/en/v0.8.4/#using-the-safe-filter].

Summary

	Forms can be scary from a security perspective.

	WTForms (and Flask-WTF) make it easy to define, secure and render
your forms.

	Use the CSRF protection provided by Flask-WTF to secure your forms.

	You can use Flask-WTF to protect AJAX calls against CSRF attacks
too.

	Define custom form validators to keep validation logic out of your
views.

	Use the WTForms field rendering to render your form’s HTML so you
don’t have to update it every time you make some changes to the form
definition.

Patterns for handling users

[image: Patterns for handling users]
One of the most common things that modern web applications need to do is
handle users. An application with basic account features needs to handle
a lot of things like registration, email confirmation, securely storing
passwords, secure password reset, authentication and more. Since a lot
of security issues present themselves when it comes to handling users,
it’s generally best to stick to standard patterns in this area.

Note

In this chapter I’m going to assume that you’re using SQLAlchemy models and WTForms to handle your form input. If you aren’t using those, you’ll need to adapt these patterns to your preferred methods.

Email confirmation

When a new user gives us their email, we generally want to confirm that
they gave us the right one. Once we’ve made that confirmation, we can
confidently send password reset links and other sensitive information to
our users without wondering who is on the receiving end.

One of the most common patterns for confirming emails is to send a
password reset link with a unique URL that, when visited, confirms that
user’s email address. For example, john@gmail.com signs up at our
application. We register him in the database with an email_confirmed
column set to False and fire off an email to john@gmail.com with a
unique URL. This URL usually contains a unique token, e.g.
http://myapp.com/accounts/confirm/Q2hhZCBDYXRsZXR0IHJvY2tzIG15IHNvY2tz.
When John gets that email, he clicks the link. Our app sees the token,
knows which email to confirm and sets John’s email_confirmed column
to True.

How do we know which email to confirm with a given token? One way would
be to store the token in the database when it is created and check that
table when we receive the confirmation request. That’s a lot of overhead
and, lucky for us, it’s unnecessary.

We’re going to encode the email address in the token. The token will
also contain a timestamp to let us set a time limit on how long it’s
valid. To do this, we’ll use the itsdangerous package. This package
gives us tools to send sensitive data into untrusted environments (like
sending an email confirmation token to an unconfirmed email). In this
case, we’re going to use an instance of the URLSafeTimedSerializer
class.

ourapp/util/security.py

from itsdangerous import URLSafeTimedSerializer

from .. import app

ts = URLSafeTimedSerializer(app.config["SECRET_KEY"])

We can use that serializer to generate a confirmation token when a user
gives us their email address. We’ll implement a simple account creation
process using this method.

ourapp/views.py

from flask import redirect, render_template, url_for

from . import app, db
from .forms import EmailPasswordForm
from .util import ts, send_email

@app.route('/accounts/create', methods=["GET", "POST"])
def create_account():
 form = EmailPasswordForm()
 if form.validate_on_submit():
 user = User(
 email = form.email.data,
 password = form.password.data
)
 db.session.add(user)
 db.session.commit()

 # Now we'll send the email confirmation link
 subject = "Confirm your email"

 token = ts.dumps(self.email, salt='email-confirm-key')

 confirm_url = url_for(
 'confirm_email',
 token=token,
 _external=True)

 html = render_template(
 'email/activate.html',
 confirm_url=confirm_url)

 # We'll assume that send_email has been defined in myapp/util.py
 send_email(user.email, subject, html)

 return redirect(url_for("index"))

 return render_template("accounts/create.html", form=form)

The view that we’ve defined handles the creation of the user and sends off an
email to the given email address. You may notice that we’re using a
template to generate the HTML for the email.

{# ourapp/templates/email/activate.html #}

Your account was successfully created. Please click the link below

to confirm your email address and activate your account:

<p>
{{ confirm_url }}
</p>

<p>
--

Questions? Comments? Email hello@myapp.com.
</p>

Okay, so now we just need to implement a view that handles the
confirmation link in that email.

ourapp/views.py

@app.route('/confirm/<token>')
def confirm_email(token):
 try:
 email = ts.loads(token, salt="email-confirm-key", max_age=86400)
 except:
 abort(404)

 user = User.query.filter_by(email=email).first_or_404()

 user.email_confirmed = True

 db.session.add(user)
 db.session.commit()

 return redirect(url_for('signin'))

This view is a simple form view. We just add the try ... except bit
at the beginning to check that the token is valid. The token contains a
timestamp, so we can tell ts.loads() to raise an exception if it is
older than max_age. In this case, we’re setting max_age to 86400
seconds, i.e. 24 hours.

Note

You can use very similar methods to implement an email update feature. Just send a confirmation link to the new email address with a token that contains both the old and the new addresses. If the token is valid, update the old address with the new one.

Storing passwords

Rule number one of handling users is to hash passwords with the Bcrypt
(or scrypt, but we’ll use Bcrypt here) algorithm before storing them. We
never store passwords in plain text. It’s a massive security issue and
it’s unfair to our users. All of the hard work has already been done and
abstracted away for us, so there’s no excuse for not following the best
practices here.

Note

OWASP is one of the industry’s most trusted source for information regarding web application security. Take a look at some of their recommendations for secure coding [https://www.owasp.org/index.php/Secure_Coding_Cheat_Sheet#Password_Storage].

We’ll go ahead and use the Flask-Bcrypt extension to implement the
bcrypt package in our application. This extension is basically just a
wrapper around the py-bcrypt package, but it does handle a few
things that would be annoying to do ourselves (like checking string
encodings before comparing hashes).

ourapp/__init__.py

from flask_bcrypt import Bcrypt

bcrypt = Bcrypt(app)

One of the reasons that the Bcrypt algorithm is so highly recommended is
that it is “future adaptable.” This means that over time, as computing
power becomes cheaper, we can make it more and more difficult to brute
force the hash by guessing millions of possible passwords. The more
“rounds” we use to hash the password, the longer it will take to make
one guess. If we hash our passwords 20 times with the algorithm before
storing them the attacker has to hash each of their guesses 20 times.

Keep in mind that if we’re hashing our passwords 20 times then our
application is going to take a long time to return a response that
depends on that process completing. This means that when choosing the
number of rounds to use, we have to balance security and usability. The
number of rounds we can complete in a given amount of time will depend
on the computational resources available to our application. It’s a good
idea to test out some different numbers and shoot for between 0.25 and
0.5 seconds to hash a password. We should try to use at least 12 rounds
though.

To test the time it takes to hash a password, we can time a quick Python
script that, well, hashes a password.

benchmark.py

from flask_bcrypt import generate_password_hash

Change the number of rounds (second argument) until it takes between
0.25 and 0.5 seconds to run.
generate_password_hash('password1', 12)

Now we can keep timing our changes to the number of rounds with the UNIX
time utility.

$ time python test.py

real 0m0.496s
user 0m0.464s
sys 0m0.024s

I did a quick benchmark on a small server that I have handy and 12
rounds seemed to take the right amount of time, so I’ll configure our
example to use that.

config.py

BCRYPT_LOG_ROUNDS = 12

Now that Flask-Bcrypt is configured, it’s time to start hashing
passwords. We could do this manually in the view that receives the
request from the sign-up form, but we’d have to do it again in the
password reset and password change views. Instead, what we’ll do is
abstract away the hashing so that our app does it without us even
thinking about it. We’ll use a setter so that when we set
user.password = 'password1', it’s automatically hashed with Bcrypt
before being stored.

ourapp/models.py

from sqlalchemy.ext.hybrid import hybrid_property

from . import bcrypt, db

class User(db.Model):
 id = db.Column(db.Integer, primary_key=True, autoincrement=True)
 username = db.Column(db.String(64), unique=True)
 _password = db.Column(db.String(128))

 @hybrid_property
 def password(self):
 return self._password

 @password.setter
 def _set_password(self, plaintext):
 self._password = bcrypt.generate_password_hash(plaintext)

We’re using SQLAlchemy’s hybrid extension to define a property with
several different functions called from the same interface. Our setter
is called when we assign a value to the user.password property. In
it, we hash the plaintext password and store it in the _password
column of the user table. Since we’re using a hybrid property we can
then access the hashed password via the same user.password property.

Now we can implement a sign-up view for an app using this model.

ourapp/views.py

from . import app, db
from .forms import EmailPasswordForm
from .models import User

@app.route('/signup', methods=["GET", "POST"])
def signup():
 form = EmailPasswordForm()
 if form.validate_on_submit():
 user = User(username=form.username.data, password=form.password.data)
 db.session.add(user)
 db.session.commit()
 return redirect(url_for('index'))

 return render_template('signup.html', form=form)

Authentication

Now that we’ve got a user in the database, we can implement
authentication. We’ll want to let a user submit a form with their
username and password (though this might be email and password for some
apps), then make sure that they gave us the correct password. If it all
checks out, we’ll mark them as authenticated by setting a cookie in
their browser. The next time they make a request we’ll know that they
have already logged in by looking for that cookie.

Let’s start by defining a UsernamePassword form with WTForms.

ourapp/forms.py

from flask_wtf import Form
from wtforms import StringField, PasswordField
from wtforms.validators import DataRequired

class UsernamePasswordForm(Form):
 username = StringField('Username', validators=[DataRequired()])
 password = PasswordField('Password', validators=[DataRequired()])

Next we’ll add a method to our user model that compares a string with
the hashed password stored for that user.

ourapp/models.py

from . import db

class User(db.Model):

 # [...] columns and properties

 def is_correct_password(self, plaintext)
 return bcrypt.check_password_hash(self._password, plaintext)

Flask-Login

Our next goal is to define a sign-in view that serves and accepts our
form. If the user enters the correct credentials, we will authenticate
them using the Flask-Login extension. This extension simplifies the
process of handling user sessions and authentication.

We need to do a little bit of configuration to get Flask-Login ready to
roll.

In __init__.py we’ll define the Flask-Login login_manager.

ourapp/__init__.py

from flask_login import LoginManager

Create and configure app
[...]

from .models import User

login_manager = LoginManager()
login_manager.init_app(app)
login_manager.login_view = "signin"

@login_manager.user_loader
def load_user(userid):
 return User.query.filter(User.id==userid).first()

Here we created an instance of the LoginManager, initialized
it with our app object, defined the login view and told it how to
get a user object with a user’s id. This is the baseline
configuration we should have for Flask-Login.

Note

See more ways to customize Flask-Login [https://flask-login.readthedocs.org/en/latest/#customizing-the-login-process].

Now we can define the signin view that will handle authentication.

ourapp/views.py

from flask import redirect, url_for

from flask_login import login_user

from . import app
from .forms import UsernamePasswordForm

@app.route('/signin', methods=["GET", "POST"])
def signin():
 form = UsernamePasswordForm()

 if form.validate_on_submit():
 user = User.query.filter_by(username=form.username.data).first_or_404()
 if user.is_correct_password(form.password.data):
 login_user(user)

 return redirect(url_for('index'))
 else:
 return redirect(url_for('signin'))
 return render_template('signin.html', form=form)

We simply import the login_user function from Flask-Login, check a
user’s login credentials and call login_user(user). You can log the
current user out with logout_user().

ourapp/views.py

from flask import redirect, url_for
from flask_login import logout_user

from . import app

@app.route('/signout')
def signout():
 logout_user()

 return redirect(url_for('index'))

Forgot your password

We’ll generally want to implement a “Forgot your password” feature that
lets a user recover their account by email. This area has a plethora of
potential vulnerabilities because the whole point is to let an
unauthenticated user take over an account. We’ll implement our password
reset using some of the same techniques as our email confirmation.

We’ll need a form to request a reset for a given account’s email and a
form to choose a new password once we’ve confirmed that the
unauthenticated user has access to that email address. The code in this
section assumes that our user model has an email and a password, where
the password is a hybrid property as we previously created.

Warning

Don’t send password reset links to an unconfirmed email address! You want to be sure that you are sending this link to the right person.

We’re going to need two forms. One is to request that a reset link be
sent to a certain email and the other is to change the password once the
email has been verified.

ourapp/forms.py

from flask_wtf import Form
from wtforms import StringField, PasswordField
from wtforms.validators import DataRequired, Email

class EmailForm(Form):
 email = StringField('Email', validators=[DataRequired(), Email()])

class PasswordForm(Form):
 password = PasswordField('Password', validators=[DataRequired()])

This code assumes that our password reset form just needs one field for
the password. Many apps require the user to enter their new password
twice to confirm that they haven’t made a typo. To do this, we’d simply
add another PasswordField and add the EqualTo WTForms validator
to the main password field.

Note

There a lot of interesting discussions in the User Experience (UX) community about the best way to handle this in sign-up forms. I personally like the thoughts of one Stack Exchange user (Roger Attrill) who said:

“We should not ask for password twice - we should ask for it once and make sure that the ‘forgot password’ system works seamlessly and flawlessly.”

	Read more about this topic in the thread on the User Experience Stack Exchange [http://ux.stackexchange.com/questions/20953/why-should-we-ask-the-password-twice-during-registration/21141].

	There are also some cool ideas for simplifying sign-up and sign-in forms in an article on Smashing Magazine article [http://uxdesign.smashingmagazine.com/2011/05/05/innovative-techniques-to-simplify-signups-and-logins/].

Now we’ll implement the first view of our process, where a user can
request that a password reset link be sent for a given email address.

ourapp/views.py

from flask import redirect, url_for, render_template

from . import app
from .forms import EmailForm
from .models import User
from .util import send_email, ts

@app.route('/reset', methods=["GET", "POST"])
def reset():
 form = EmailForm()
 if form.validate_on_submit():
 user = User.query.filter_by(email=form.email.data).first_or_404()

 subject = "Password reset requested"

 # Here we use the URLSafeTimedSerializer we created in `util` at the
 # beginning of the chapter
 token = ts.dumps(user.email, salt='recover-key')

 recover_url = url_for(
 'reset_with_token',
 token=token,
 _external=True)

 html = render_template(
 'email/recover.html',
 recover_url=recover_url)

 # Let's assume that send_email was defined in myapp/util.py
 send_email(user.email, subject, html)

 return redirect(url_for('index'))
 return render_template('reset.html', form=form)

When the form receives an email address, we grab the user with that
email address, generate a reset token and send them a password reset
URL. That URL routes them to a view that will validate the token and let
them reset the password.

ourapp/views.py

from flask import redirect, url_for, render_template

from . import app, db
from .forms import PasswordForm
from .models import User
from .util import ts

@app.route('/reset/<token>', methods=["GET", "POST"])
def reset_with_token(token):
 try:
 email = ts.loads(token, salt="recover-key", max_age=86400)
 except:
 abort(404)

 form = PasswordForm()

 if form.validate_on_submit():
 user = User.query.filter_by(email=email).first_or_404()

 user.password = form.password.data

 db.session.add(user)
 db.session.commit()

 return redirect(url_for('signin'))

 return render_template('reset_with_token.html', form=form, token=token)

We’re using the same token validation method as we did to confirm the
user’s email address. The view passes the token from the URL back into
the template. Then the template uses the token to submit the form to the
right URL. Let’s have a look at what that template might look like.

{# ourapp/templates/reset_with_token.html #}

{% extends "layout.html" %}

{% block body %}
<form action="{{ url_for('reset_with_token', token=token) }}" method="POST">
 {{ form.password.label }}: {{ form.password }}

 {{ form.csrf_token }}
 <input type="submit" value="Change my password" />
</form>
{% endblock %}

Summary

	Use the itsdangerous package to create and validate tokens sent to an
email address.

	You can use these tokens to validate emails when a user creates an
account, changes their email or forgets their password.

	Authenticate users using the Flask-Login extension to avoid dealing
with a bunch of session management stuff yourself.

	Always think about how a malicious user could abuse your app to do
things that you didn’t intend.

Deployment

[image: Deployment]
We’re finally ready to show our app to the world. It’s time to deploy.
This process can be a pain because there are so many moving parts. There
are a lot of choices to make when it comes to our production stack as
well. In this chapter, we’re going to talk about some of the important
pieces and some of the options we have with each.

The Host

We’re going to need a server somewhere. There are thousands of providers
out there, but these are the three that I personally recommend. I’m not
going to go over the details of how to get started with them, because
that’s out of the scope of this book. Instead I’ll talk about their
benefits with regards to hosting Flask applications.

Amazon Web Services EC2

Amazon Web Services is a collection of services provided by … Amazon!
There’s a good chance that you’ve heard of them before as they’re
probably the most popular choice for new startups these days. The AWS
service that we’re most concerned with here is EC2, or Elastic Compute
Cloud. The big selling point of EC2 is that we get virtual servers - or
instances as they’re called in AWS parlance - that spin up in
seconds. If we need to scale our app quickly it’s just a matter of
spinning up a few more EC2 instances for our app and sticking them
behind a load balancer (we can even use the AWS Elastic Load Balancer).

With regards to Flask, AWS is just a regular old virtual server. We can
spin it up with our favorite linux distro and install our Flask app and
our server stack without much overhead. It means that we’re going to
need a certain amount of systems administration knowledge though.

Heroku

Heroku is an application hosting service that is built on top of AWS
services like EC2. They let us take advantage of the convenience of EC2
without the requisite systems administration experience.

With Heroku, we deploy our application with a git push to their
server. This is really convenient when we don’t want to spend our time
SSHing into a server, installing and configuring software and coming up
with a sane deployment procedure. This convenience comes at a price of
course, though both AWS and Heroku offer a certain amount of free
service.

Note

Heroku has a tutorial on deploying Flask [https://devcenter.heroku.com/articles/getting-started-with-python] with their service.

Note

Administrating your own databases can be time consuming and doing it well requires some experience. It’s great to learn about database administration by doing it yourself for your side projects, but sometimes you’d like to save time and effort by outsourcing that part to professionals.

Both Heroku and AWS have database management offerings. I don’t have personal experience with either yet, but I’ve heard great things. It’s worth considering if you want to make sure your data is being secured and backed-up without having to do it yourself.

	Heroku Postgres [https://www.heroku.com/postgres]

	Amazon RDS [https://aws.amazon.com/rds/]

Digital Ocean

Digital Ocean is an EC2 competitor that has recently begun to take off.
Like EC2, Digital Ocean lets us spin up virtual servers - now called
droplets - quickly. All droplets run on SSDs, which isn’t something
we get at the lower levels of EC2. The biggest selling point for me
personally is an interface that is far simpler and easier to use than
the AWS control panel. Digital Ocean is my preference for hosting and I
recommend that you take a look at them.

The Flask deployment experience on Digital Ocean is roughly the same as
on EC2. We’re starting with a clean linux distribution and installing
our server stack from there.

Note

Digital Ocean was nice enough to make a contribution to the Kickstarter campaign for Explore Flask. With that said, I promise that my recommendation comes from my own experience as a user. If I didn’t like them, I wouldn’t have asked them to pledge in the first place.

The stack

This section will cover some of the software that we’ll need to install
on our server to serve our Flask application to the world. The basic
stack is a front server that reverse proxies requests to an application
runner that is running our Flask app. We’ll usually have a database too,
so we’ll talk a little about those options as well.

Application runner

The server that we use to run Flask locally when we’re developing our
application isn’t good at handling real requests. When we’re actually
serving our application to the public, we want to run it with an
application runner like Gunicorn. Gunicorn handles requests and takes
care of complicated things like threading.

To use Gunicorn, we install the gunicorn package in our virtual
environment with Pip. Running our app is a simple command away.

rocket.py

from flask import Flask

app = Flask(__name__)

@app.route('/')
def index():
 return "Hello World!"

A fine app indeed. Now, to serve it up with Gunicorn, we simply run the
gunicorn command.

(ourapp)$ gunicorn rocket:app
2014-03-19 16:28:54 [62924] [INFO] Starting gunicorn 18.0
2014-03-19 16:28:54 [62924] [INFO] Listening at: http://127.0.0.1:8000 (62924)
2014-03-19 16:28:54 [62924] [INFO] Using worker: sync
2014-03-19 16:28:54 [62927] [INFO] Booting worker with pid: 62927

At this point, we should see “Hello World!” when we navigate our browser to http://127.0.0.1:8000.

To run this server in the background (i.e. daemonize it), we can pass the -D option to Gunicorn. That way it’ll run even after we close our current terminal session.

If we daemonize Gunicorn, we might have a hard time finding the process to close later when we want to stop the server. We can tell Gunicorn to stick the process ID in a file so that we can stop or restart it later without searching through lists of running processess. We use the -p <file> option to do that.

(ourapp)$ gunicorn rocket:app -p rocket.pid -D
(ourapp)$ cat rocket.pid
63101

To restart and kill the server, we can run kill -HUP and kill respectively.

(ourapp)$ kill -HUP `cat rocket.pid`
(ourapp)$ kill `cat rocket.pid`

By default Gunicorn runs on port 8000. We can change the port by adding the -b bind option.

(ourapp)$ gunicorn rocket:app -p rocket.pid -b 127.0.0.1:7999 -D

Making Gunicorn public

Warning

Gunicorn is meant to sit behind a reverse proxy. If you tell it to listen to requests coming in from the public, it makes an easy target for denial of service attacks. It’s just not meant to handle those kinds of requests. Only allow outside connections for debugging purposes and make sure to switch it back to only allowing internal connections when you’re done.

If we run Gunicorn like we have in the listings, we won’t be able to
access it from our local system. That’s because Gunicorn binds to
127.0.0.1 by default. This means that it will only listen to connections
coming from the server itself. This is the behavior that we want when we
have a reverse proxy server that is sitting between the public and our
Gunicorn server. If, however, we need to make requests from outside of
the server for debugging purposes, we can tell Gunicorn to bind to
0.0.0.0. This tells it to listen for all requests.

(ourapp)$ gunicorn rocket:app -p rocket.pid -b 0.0.0.0:8000 -D

Note

	Read more about running and deploying Gunicorn in the documentation [http://docs.gunicorn.org/en/latest/].

	Fabric [http://docs.fabfile.org/en/latest] is a tool that lets you run all of these deployment and management commands from the comfort of your local machine without SSHing into every server.

Nginx Reverse Proxy

A reverse proxy handles public HTTP requests, sends them back to
Gunicorn and gives the response back to the requesting client. Nginx can
be used very effectively as a reverse proxy and Gunicorn “strongly
advises” that we use it.

To configure Nginx as a reverse proxy to a Gunicorn server running on
127.0.0.1:8000, we can create a file for our app:
/etc/nginx/sites-available/exploreflask.com.

/etc/nginx/sites-available/exploreflask.com

Redirect www.exploreflask.com to exploreflask.com
server {
 server_name www.exploreflask.com;
 rewrite ^ http://exploreflask.com/ permanent;
}

Handle requests to exploreflask.com on port 80
server {
 listen 80;
 server_name exploreflask.com;

 # Handle all locations
 location / {
 # Pass the request to Gunicorn
 proxy_pass http://127.0.0.1:8000;

 # Set some HTTP headers so that our app knows where the
 # request really came from
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 }
}

Now we’ll create a symlink to this file at /etc/nginx/sites-enabled
and restart Nginx.

$ sudo ln -s \
/etc/nginx/sites-available/exploreflask.com \
/etc/nginx/sites-enabled/exploreflask.com

We should now be able to make our requests to Nginx and receive the
response from our app.

Note

The Nginx configuration section [http://docs.gunicorn.org/en/latest/deploy.html#nginx-configuration] in the Gunicorn docs will give you more information about setting Nginx up for this purpose.

ProxyFix

We may run into some issues with Flask not properly handling the proxied
requests. It has to do with those headers we set in the Nginx
configuration. We can use the Werkzeug ProxyFix to … fix the proxy.

app.py

from flask import Flask

Import the fixer
from werkzeug.contrib.fixers import ProxyFix

app = Flask(__name__)

Use the fixer
app.wsgi_app = ProxyFix(app.wsgi_app)

@app.route('/')
def index():
 return "Hello World!"

Note

	Read more about ProxyFix in the Werkzeug docs [http://werkzeug.pocoo.org/docs/contrib/fixers/#werkzeug.contrib.fixers.ProxyFix].

Summary

	Three good choices for hosting Flask apps are AWS EC2, Heroku and
Digital Ocean.

	The basic deployment stack for a Flask application consists of the
app, an application runner like Gunicorn and a reverse proxy like
Nginx.

	Gunicorn should sit behind Nginx and listen on 127.0.0.1 (internal
requests) not 0.0.0.0 (external requests).

	Use Werkzeug’s ProxyFix to handle the appropriate proxy headers in
your Flask application.

Conclusion

I don’t feel like there’s a lot to conclude at this point. I hope
reading this book has helped you in your adventure with Flask. If that’s
the case, please get in touch with me! I would love to hear from people
who enjoyed reading this. Feel free to let me know if you have any
suggestions to improve the book as well.

Thanks for reading!

- Robert

Index

 _static/images/organizing.png
@ 1 © 1 © 1 © N © N O N O B O I ©

_static/images/static.png

_static/images/forms.png

_static/images/me-box.png

_static/images/users.png

_static/images/views.png

_static/images/storing.png
N

_static/images/templates.png

_images/balanced-logo.png
BALANCED

_images/blueprints.png

_images/configuration.png

_images/conventions.png

_images/deployment.png

nav.xhtml

 Table of Contents

 		
 Explore Flask

 		
 Preface

 		
 Assumptions

 		
 Audience

 		
 Versions

 		
 Living document

 		
 Conventions used in this book

 		
 Each chapter stands on its own

 		
 Formatting

 		
 Easter eggs

 		
 Summary

 		
 Coding conventions

 		
 Let’s have a PEP rally!

 		
 PEP 8: Style Guide for Python Code

 		
 PEP 257: Docstring Conventions

 		
 Relative imports

 		
 Summary

 		
 Environment

 		
 Use virtualenv to manage your environment

 		
 virtualenvwrapper

 		
 Keeping track of dependencies

 		
 Manually tracking dependencies

 		
 Version control

 		
 What to keep out of version control

 		
 Debugging

 		
 Debug Mode

 		
 Flask-DebugToolbar

 		
 Summary

 		
 Organizing your project

 		
 Definitions

 		
 Organization patterns

 		
 Single module

 		
 Package

 		
 Blueprints

 		
 Summary

 		
 Configuration

 		
 The simple case

 		
 Instance folder

 		
 Using instance folders

 		
 Secret keys

 		
 Minor environment-based configuration

 		
 Configuring based on environment variables

 		
 Summary

 		
 Advanced patterns for views and routing

 		
 View decorators

 		
 Authentication

 		
 Caching

 		
 Custom decorators

 		
 URL Converters

 		
 Built-in converters

 		
 Custom converters

 		
 Summary

 		
 Blueprints

 		
 What is a blueprint?

 		
 Why would you use blueprints?

 		
 Where do you put them?

 		
 Functional structure

 		
 Divisional

 		
 Which one is best?

 		
 How do you use them?

 		
 Basic usage

 		
 Using a dynamic URL prefix

 		
 Using a dynamic subdomain

 		
 Refactoring small apps to use blueprints

 		
 Step 1: Divisional or functional?

 		
 Step 2: Move some files around

 		
 Step 3: Cut the crap

 		
 Step 4: Blueprint…ifi…cation or something

 		
 Step 5: Enjoy

 		
 Summary

 		
 Templates

 		
 A quick primer on Jinja

 		
 How to organize templates

 		
 Inheritance

 		
 Creating macros

 		
 Custom filters

 		
 Summary

 		
 Static files

 		
 Organizing your static files

 		
 Serving a favicon

 		
 Manage static assets with Flask-Assets

 		
 Defining bundles

 		
 Using our bundles

 		
 Using filters

 		
 Summary

 		
 Storing data

 		
 SQLAlchemy

 		
 Initializing the database

 		
 Alembic migrations

 		
 Summary

 		
 Handling forms

 		
 Flask-WTF

 		
 CSRF Protection and validation

 		
 Custom validators

 		
 Rendering forms

 		
 Summary

 		
 Patterns for handling users

 		
 Email confirmation

 		
 Storing passwords

 		
 Authentication

 		
 Flask-Login

 		
 Forgot your password

 		
 Summary

 		
 Deployment

 		
 The Host

 		
 Amazon Web Services EC2

 		
 Heroku

 		
 Digital Ocean

 		
 The stack

 		
 Application runner

 		
 Nginx Reverse Proxy

 		
 Summary

 		
 Conclusion

_images/organizing.png
@ 1 © 1 © 1 © N © N O N O B O I ©

_images/static.png

_images/environment.png

_images/forms.png

_images/users.png

_images/views.png

_images/storing.png
N

_images/templates.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/up.png

_static/images/configuration.png

_static/images/conventions.png

_static/images/balanced-logo.png
BALANCED

_static/images/blueprints.png

_static/images/environment.png

_static/images/cover.png
EXPLORE FLASK

_static/images/deployment.png

